logo

Minimalna liczba usunięć i wstawień, aby przekształcić jeden ciąg w inny

Biorąc pod uwagę dwa ciągi s1 I s2 . Zadanie polega na usuń/usuń I wstawić the minimalna liczba znaków z s1 przekształcić go w s2 . Możliwe, że ten sam charakter należy usunąć/usunąć z jednego punktu s1 i wstawiony w innym miejscu.

Przykład 1:  

Wejście: s1 = 'sterta' s2 =
Wyjście: 3
Wyjaśnienie: Minimalne usunięcie = 2 i minimalne wstawienie = 1
p i h są usuwane ze sterty, a następnie p jest wstawiane na początku. Należy jednak zauważyć, że p było wymagane, zostało najpierw usunięte/usunięte ze swojej pozycji, a następnie wstawione w inną pozycję. Zatem p przyczynia się do liczby usunięć i jednego do liczby wstawień.



Wejście: s1 = „geeksforgeeks” s2 = „geeks”
Wyjście: 8
Wyjaśnienie: 8 skreśleń, tj. usuń wszystkie znaki ciągu „forgeeks”.

Spis treści

Korzystanie z rekurencji - O(2^n) czasu i O(n) przestrzeni

Proste podejście do rozwiązania problemu polega na wygenerowaniu wszystkich podsekwencje s1 i dla każdego podciągu obliczenie minimum usunięcia i wstawienia wymagane do przekształcenia go w s2. Efektywne podejście wykorzystuje koncepcję najdłuższy wspólny podciąg (LCS) aby znaleźć długość najdłuższego LCS. Kiedy już mamy LCS dwóch ciągów, możemy znaleźć Minimalne włożenie I Usunięcia aby przekonwertować s1 na s2.

  • Do zminimalizować usuwanie musimy tylko usunąć znaki z s1 które nie są częścią najdłuższy wspólny podciąg (LCS) z s2 . Można to ustalić poprzez odejmowanie the Długość LCS od długości s1 . Zatem minimalna liczba usunięć wynosi:
    minDeletions = długość s1 – długość LCS.
  • Podobnie do zminimalizować wstawki musimy tylko wstawić znaki z s2 do s1 które nie są częścią LCS. Można to ustalić poprzez odejmowanie the Długość LCS od długości s2 . Zatem minimalna liczba wstawek wynosi:
    minInsertions = długość s2 – długość LCS.
C++
// C++ program to find the minimum number of insertion and deletion // using recursion. #include    using namespace std; int lcs(string &s1 string &s2 int m int n) {    // Base case: If either string is empty  // the LCS length is 0  if (m == 0 || n == 0)  return 0;  // If the last characters of both substrings match  if (s1[m - 1] == s2[n - 1])  // Include the matching character in LCS and   // recurse for remaining substrings  return 1 + lcs(s1 s2 m - 1 n - 1);  else  // If the last characters do not match   // find the maximum LCS length by:  // 1. Excluding the last character of s1  // 2. Excluding the last character of s2  return max(lcs(s1 s2 m n - 1) lcs(s1 s2 m - 1 n)); } int minOperations(string s1 string s2) {  int m = s1.size();  int n = s2.size();  // the length of the LCS for s1[0..m-1]  // and s2[0..n-1]  int len = lcs(s1 s2 m n);  // Characters to delete from s1  int minDeletions = m - len;  // Characters to insert into s1  int minInsertions = n - len;  // Total operations needed  int total = minDeletions + minInsertions;  return total; } int main() {  string s1 = 'AGGTAB';  string s2 = 'GXTXAYB';  int res = minOperations(s1 s2);  cout << res;  return 0; } 
Java
// Java program to find the minimum number of insertions and // deletions using recursion. class GfG {    static int lcs(String s1 String s2 int m int n) {    // Base case: If either string is empty the LCS  // length is 0  if (m == 0 || n == 0) {  return 0;  }  // If the last characters of both substrings match  if (s1.charAt(m - 1) == s2.charAt(n - 1)) {  // Include the matching character in LCS  // and recurse for remaining substrings  return 1 + lcs(s1 s2 m - 1 n - 1);  }  else {    // If the last characters do not match  // find the maximum LCS length by:  // 1. Excluding the last character of s1  // 2. Excluding the last character of s2  return Math.max(lcs(s1 s2 m n - 1)  lcs(s1 s2 m - 1 n));  }  }  static int minOperations(String s1 String s2) {  int m = s1.length();  int n = s2.length();  // the length of LCS for s1[0..m-1] and  // s2[0..n-1]  int len = lcs(s1 s2 m n);  // Characters to delete from s1  int minDeletions = m - len;  // Characters to insert into s2  int minInsertions = n - len;  // Total operations needed  return minDeletions + minInsertions;  }  public static void main(String[] args) {  String s1 = 'AGGTAB';  String s2 = 'GXTXAYB';  int res = minOperations(s1 s2);  System.out.println(res);  } } 
Python
# Python program to find the minimum number of insertions # and deletions using recursion def lcs(s1 s2 m n): # Base case: If either string is empty # the LCS length is 0 if m == 0 or n == 0: return 0 # If the last characters of both substrings match if s1[m - 1] == s2[n - 1]: # Include the matching character in LCS and  # recurse for remaining substrings return 1 + lcs(s1 s2 m - 1 n - 1) else: # If the last characters do not match  # find the maximum LCS length by: # 1. Excluding the last character of s1 # 2. Excluding the last character of s2 return max(lcs(s1 s2 m n - 1) lcs(s1 s2 m - 1 n)) def minOperations(s1 s2): m = len(s1) n = len(s2) # the length of LCS for s1[0..m-1] and s2[0..n-1] lengthLcs = lcs(s1 s2 m n) # Characters to delete from str1 minDeletions = m - lengthLcs # Characters to insert into str1 minInsertions = n - lengthLcs # Total operations needed return minDeletions + minInsertions if __name__ == '__main__': s1 = 'AGGTAB' s2 = 'GXTXAYB' result = minOperations(s1 s2) print(result) 
C#
// C# program to find the minimum number of insertions and // deletions using recursion. using System; class GfG {  static int lcs(string s1 string s2 int m int n) {    // Base case: If either string is empty the LCS  // length is 0  if (m == 0 || n == 0)  return 0;  // If the last characters of both substrings match  if (s1[m - 1] == s2[n - 1]) {    // Include the matching character in LCS  // and recurse for remaining substrings  return 1 + lcs(s1 s2 m - 1 n - 1);  }  else {    // If the last characters do not match  // find the maximum LCS length by:  // 1. Excluding the last character of s1  // 2. Excluding the last character of s2  return Math.Max(lcs(s1 s2 m n - 1)  lcs(s1 s2 m - 1 n));  }  }  static int minOperations(string s1 string s2) {  int m = s1.Length;  int n = s2.Length;  // the length of LCS for s1[0..m-1] and  // s2[0..n-1]  int lengthLcs = lcs(s1 s2 m n);  // Characters to delete from s1  int minDeletions = m - lengthLcs;  // Characters to insert into s2  int minInsertions = n - lengthLcs;  // Total operations needed  return minDeletions + minInsertions;  }  static void Main(string[] args) {  string s1 = 'AGGTAB';  string s2 = 'GXTXAYB';  int result = minOperations(s1 s2);  Console.WriteLine(result);  } } 
JavaScript
// JavaScript program to find the minimum number of // insertions and deletions using recursion function lcs(s1 s2 m n) {  // Base case: If either string is empty the LCS length  // is 0  if (m === 0 || n === 0) {  return 0;  }  // If the last characters of both substrings match  if (s1[m - 1] === s2[n - 1]) {    // Include the matching character in LCS and recurse  // for remaining substrings  return 1 + lcs(s1 s2 m - 1 n - 1);  }  else {    // If the last characters do not match find the  // maximum LCS length by:  // 1. Excluding the last character of s1  // 2. Excluding the last character of s2  return Math.max(lcs(s1 s2 m n - 1)  lcs(s1 s2 m - 1 n));  } } function minOperations(s1 s2) {  const m = s1.length;  const n = s2.length;  // Length of the LCS  const len = lcs(s1 s2 m n);  // Characters to delete from s1  const minDeletions = m - len;  // Characters to insert into s1  const minInsertions = n - len;  // Total operations needed  return minDeletions + minInsertions; } const s1 = 'AGGTAB'; const s2 = 'GXTXAYB'; const res = minOperations(s1 s2); console.log(res); 

Wyjście
5

Korzystanie z DP z góry na dół (zapamiętywanie) - O(n^2) czasu i O(n^2) przestrzeni

W tym podejściu się stosujemy zapamiętywanie do przechowywania wyników nakładających się podproblemów podczas znajdowania najdłuższego wspólnego podciągu (LCS). A Tablica 2D notatka służy do zapisywania LCS długości różnych podciągów dwóch ciągów wejściowych, zapewniając, że każdy podproblem zostanie rozwiązany tylko raz.
Ta metoda jest podobna do Najdłuższy wspólny podciąg (LCS) problem z zapamiętywaniem.

C++
// C++ program to find the minimum of insertion and deletion // using memoization. #include    #include  using namespace std; int lcs(string &s1 string &s2 int m int n   vector<vector<int>> &memo) {    // Base case: If either string is empty the LCS length is 0  if (m == 0 || n == 0)  return 0;  // If the value is already computed return  // it from the memo array  if(memo[m][n]!=-1)  return memo[m][n];    // If the last characters of both substrings match  if (s1[m - 1] == s2[n - 1])    // Include the matching character in LCS and recurse for  // remaining substrings  return memo[m][n] = 1 + lcs(s1 s2 m - 1 n - 1 memo);  else    // If the last characters do not match find the maximum LCS length by:  // 1. Excluding the last character of s1  // 2. Excluding the last character of s2  return memo[m][n] = max(lcs(s1 s2 m n - 1 memo)  lcs(s1 s2 m - 1 n memo)); } int minOperations(string s1 string s2) {    int m = s1.size();   int n = s2.size();     // Initialize the memoization array with -1.  vector<vector<int>> memo = vector<vector<int>>  (m+1vector<int>(n+1-1));    // the length of the LCS for   // s1[0..m-1] and s2[0..n-1]  int len = lcs(s1 s2 m n memo);  // Characters to delete from s1  int minDeletions = m - len;  // Characters to insert into s1  int minInsertions = n - len;  // Total operations needed  int total = minDeletions + minInsertions;  return total; } int main() {    string s1 = 'AGGTAB';  string s2 = 'GXTXAYB';  int res = minOperations(s1 s2);  cout << res;  return 0; } 
Java
// Java program to find the minimum of insertion and deletion // using memoization. class GfG {  static int lcs(String s1 String s2 int m int n int[][] memo) {    // Base case: If either string is empty   // the LCS length is 0  if (m == 0 || n == 0) {   return 0;  }  // If the value is already computed return it  // from the memo array  if (memo[m][n] != -1) {  return memo[m][n];  }  // If the last characters of both substrings match  if (s1.charAt(m - 1) == s2.charAt(n - 1)) {  // Include the matching character in LCS and recurse for  // remaining substrings  memo[m][n] = 1 + lcs(s1 s2 m - 1 n - 1 memo);  }  else {    // If the last characters do not match  // find the maximum LCS length by:  // 1. Excluding the last character of s1  // 2. Excluding the last character of s2  memo[m][n] = Math.max(lcs(s1 s2 m n - 1 memo)  lcs(s1 s2 m - 1 n memo));  }  return memo[m][n];  }  static int minOperations(String s1 String s2) {    int m = s1.length();   int n = s2.length();   // Initialize the memoization array with -1   // (indicating uncalculated values)  int[][] memo = new int[m + 1][n + 1];  for (int i = 0; i <= m; i++) {  for (int j = 0; j <= n; j++) {  memo[i][j] = -1;  }  }  // the length of LCS for s1[0..m-1] and s2[0..n-1]  int len = lcs(s1 s2 m n memo);  // Characters to delete from s1  int minDeletions = m - len;  // Characters to insert into s1  int minInsertions = n - len;  // Total operations needed  return minDeletions + minInsertions;  }  static void main(String[] args) {    String s1 = 'AGGTAB';   String s2 = 'GXTXAYB';   int res = minOperations(s1 s2);   System.out.println(res);   } } 
Python
# Python program to find the minimum number of insertions and  # deletions using memoization def lcs(s1 s2 m n memo): # Base case: If either string is empty the LCS length is 0 if m == 0 or n == 0: return 0 # If the value is already computed  # return it from the memo array if memo[m][n] != -1: return memo[m][n] # If the last characters of both substrings match if s1[m - 1] == s2[n - 1]: # Include the matching character in LCS and  # recurse for remaining substrings memo[m][n] = 1 + lcs(s1 s2 m - 1 n - 1 memo) else: # If the last characters do not match  # find the maximum LCS length by: # 1. Excluding the last character of s1 # 2. Excluding the last character of s2 memo[m][n] = max(lcs(s1 s2 m n - 1 memo) lcs(s1 s2 m - 1 n memo)) # Return the computed value return memo[m][n] def minOperations(s1 s2): m = len(s1) n = len(s2) # Initialize the memoization array with -1 # (indicating uncalculated values) memo = [[-1 for _ in range(n + 1)] for _ in range(m + 1)] # Calculate the length of LCS for s1[0..m-1] and s2[0..n-1] lengthLcs = lcs(s1 s2 m n memo) # Characters to delete from s1 minDeletions = m - lengthLcs # Characters to insert into s1 minInsertions = n - lengthLcs # Total operations needed return minDeletions + minInsertions if __name__ == '__main__': s1 = 'AGGTAB' s2 = 'GXTXAYB' res = minOperations(s1 s2) print(res) 
C#
// C# program to find the minimum of insertion and deletion // using memoization. using System; class GfG {    static int lcs(string s1 string s2 int m int n  int[ ] memo) {    // Base case: If either string is empty the LCS  // length is 0  if (m == 0 || n == 0) {  return 0;  }  // If the value is already computed return it from  // the memo array  if (memo[m n] != -1) {  return memo[m n];  }  // If the last characters of both substrings match  if (s1[m - 1] == s2[n - 1]) {    // Include the matching character in LCS and  // recurse for remaining substrings  memo[m n]  = 1 + lcs(s1 s2 m - 1 n - 1 memo);  }  else {    // If the last characters do not match find the  // maximum LCS length by:  // 1. Excluding the last character of s1  // 2. Excluding the last character of s2  memo[m n]  = Math.Max(lcs(s1 s2 m n - 1 memo)  lcs(s1 s2 m - 1 n memo));  }  // Return the computed value  return memo[m n];  }    static int minOperations(string s1 string s2) {    int m = s1.Length;   int n = s2.Length;   // Initialize the memoization array with -1  // (indicating uncalculated values)  int[ ] memo = new int[m + 1 n + 1];  for (int i = 0; i <= m; i++) {  for (int j = 0; j <= n; j++) {  memo[i j] = -1;  }  }  // Calculate the length of LCS for s1[0..m-1] and  // s2[0..n-1]  int lengthLcs = lcs(s1 s2 m n memo);  // Characters to delete from s1  int minDeletions = m - lengthLcs;  // Characters to insert into s1  int minInsertions = n - lengthLcs;  // Total operations needed  return minDeletions + minInsertions;  }    static void Main(string[] args) {    string s1 = 'AGGTAB';  string s2 = 'GXTXAYB';  int res = minOperations(s1 s2);  Console.WriteLine(res);   } } 
JavaScript
// JavaScript program to find the minimum number of // insertions and deletions using memoization function lcs(s1 s2 m n memo) {  // Base case: If either string is empty the LCS length  // is 0  if (m === 0 || n === 0) {  return 0;  }  // If the value is already computed return it from the  // memo array  if (memo[m][n] !== -1) {  return memo[m][n];  }  // If the last characters of both substrings match  if (s1[m - 1] === s2[n - 1]) {    // Include the matching character in LCS and recurse  // for remaining substrings  memo[m][n] = 1 + lcs(s1 s2 m - 1 n - 1 memo);  }  else {    // If the last characters do not match find the  // maximum LCS length by:  // 1. Excluding the last character of s1  // 2. Excluding the last character of s2  memo[m][n] = Math.max(lcs(s1 s2 m n - 1 memo)  lcs(s1 s2 m - 1 n memo));  }    return memo[m][n]; } function minOperations(s1 s2){  const m = s1.length;  const n = s2.length;  // Initialize the memoization array with -1 (indicating  // uncalculated values)  const memo = Array.from({length : m + 1}  () => Array(n + 1).fill(-1));  // Calculate the length of LCS for s1[0..m-1] and  // s2[0..n-1]  const len = lcs(s1 s2 m n memo);  // Characters to delete from s1  const minDeletions = m - len;  // Characters to insert into s1  const minInsertions = n - len;  // Total operations needed  return minDeletions + minInsertions; } const s1 = 'AGGTAB'; const s2 = 'GXTXAYB'; const res = minOperations(s1 s2); console.log(res); 

Wyjście
5

Korzystanie z DP od dołu do góry (tabulacja) - O(n^2) czasu i O(n^2) przestrzeni

Podejście jest podobne do poprzedni zamiast rozbijać problem rekurencyjnie My iteracyjnie zbuduj rozwiązanie, obliczając oddolnie sposób. Utrzymujemy A Tabela 2D dp[][] w taki sposób, że dp[i][j] przechowuje Najdłuższy wspólny podciąg (LCS) dla podproblem (i j) .
To podejście jest podobne do szukania LCS w sposób oddolny .

C++
// C++ program to find the minimum of insertion and deletion // using tabulation. #include    #include  using namespace std;   int lcs(string &s1 string &s2) {    int m = s1.size();  int n = s2.size();  // Initializing a matrix of size (m+1)*(n+1)  vector<vector<int>> dp(m + 1 vector<int>(n + 1 0));  // Building dp[m+1][n+1] in bottom-up fashion  for (int i = 1; i <= m; ++i) {  for (int j = 1; j <= n; ++j) {  if (s1[i - 1] == s2[j - 1])  dp[i][j] = dp[i - 1][j - 1] + 1;  else  dp[i][j] = max(dp[i - 1][j] dp[i][j - 1]);  }  }  // dp[m][n] contains length of LCS for s1[0..m-1]  // and s2[0..n-1]  return dp[m][n]; } int minOperations(string s1 string s2) {    int m = s1.size();  int n = s2.size();  // the length of the LCS for  // s1[0..m-1] and s2[0..n-1]  int len = lcs(s1 s2);  // Characters to delete from s1  int minDeletions = m - len;  // Characters to insert into s1  int minInsertions = n - len;  // Total operations needed  int total = minDeletions + minInsertions;  return total; } int main() {    string s1 = 'AGGTAB';  string s2 = 'GXTXAYB';  int res = minOperations(s1 s2);  cout << res;  return 0; } 
Java
// Java program to find the minimum of insertion and // deletion using tabulation. class GfG {    static int lcs(String s1 String s2) {    int m = s1.length();  int n = s2.length();  // Initializing a matrix of size (m+1)*(n+1)  int[][] dp = new int[m + 1][n + 1];  // Building dp[m+1][n+1] in bottom-up fashion  for (int i = 1; i <= m; ++i) {  for (int j = 1; j <= n; ++j) {  if (s1.charAt(i - 1) == s2.charAt(j - 1))  dp[i][j] = dp[i - 1][j - 1] + 1;  else  dp[i][j] = Math.max(dp[i - 1][j]  dp[i][j - 1]);  }  }  // dp[m][n] contains length of LCS for s1[0..m-1]  // and s2[0..n-1]  return dp[m][n];  }  static int minOperations(String s1 String s2) {    int m = s1.length();  int n = s2.length();  // the length of the LCS for s1[0..m-1] and  // str2[0..n-1]  int len = lcs(s1 s2);  // Characters to delete from s1  int minDeletions = m - len;  // Characters to insert into s1  int minInsertions = n - len;  // Total operations needed  return minDeletions + minInsertions;  }  public static void main(String[] args) {    String s1 = 'AGGTAB';  String s2 = 'GXTXAYB';  int res = minOperations(s1 s2);  System.out.println(res);  } } 
Python
# Python program to find the minimum of insertion and deletion # using tabulation. def lcs(s1 s2): m = len(s1) n = len(s2) # Initializing a matrix of size (m+1)*(n+1) dp = [[0] * (n + 1) for _ in range(m + 1)] # Building dp[m+1][n+1] in bottom-up fashion for i in range(1 m + 1): for j in range(1 n + 1): if s1[i - 1] == s2[j - 1]: dp[i][j] = dp[i - 1][j - 1] + 1 else: dp[i][j] = max(dp[i - 1][j] dp[i][j - 1]) # dp[m][n] contains length of LCS for # s1[0..m-1] and s2[0..n-1] return dp[m][n] def minOperations(s1 s2): m = len(s1) n = len(s2) # the length of the LCS for  # s1[0..m-1] and s2[0..n-1] lengthLcs = lcs(s1 s2) # Characters to delete from s1 minDeletions = m - lengthLcs # Characters to insert into s1 minInsertions = n - lengthLcs # Total operations needed return minDeletions + minInsertions s1 = 'AGGTAB' s2 = 'GXTXAYB' res = minOperations(s1 s2) print(res) 
C#
// C# program to find the minimum of insertion and deletion // using tabulation. using System; class GfG {    static int Lcs(string s1 string s2) {    int m = s1.Length;  int n = s2.Length;  // Initializing a matrix of size (m+1)*(n+1)  int[ ] dp = new int[m + 1 n + 1];  // Building dp[m+1][n+1] in bottom-up fashion  for (int i = 1; i <= m; ++i) {  for (int j = 1; j <= n; ++j) {  if (s1[i - 1] == s2[j - 1])  dp[i j] = dp[i - 1 j - 1] + 1;  else  dp[i j] = Math.Max(dp[i - 1 j]  dp[i j - 1]);  }  }  // dp[m n] contains length of LCS for s1[0..m-1]  // and s2[0..n-1]  return dp[m n];  }  static int minOperations(string s1 string s2) {    int m = s1.Length;  int n = s2.Length;  // the length of the LCS for s1[0..m-1] and  // s2[0..n-1]  int len = Lcs(s1 s2);  // Characters to delete from str1  int minDeletions = m - len;  // Characters to insert into str1  int minInsertions = n - len;  // Total operations needed  return minDeletions + minInsertions;  }  static void Main() {    string s1 = 'AGGTAB';  string s2 = 'GXTXAYB';  int res = minOperations(s1 s2);  Console.WriteLine(res);  } } 
JavaScript
// JavaScript program to find the minimum of insertion and // deletion using tabulation. function lcs(s1 s2) {  let m = s1.length;  let n = s2.length;  // Initializing a matrix of size (m+1)*(n+1)  let dp = Array(m + 1).fill().map(  () => Array(n + 1).fill(0));  // Building dp[m+1][n+1] in bottom-up fashion  for (let i = 1; i <= m; ++i) {  for (let j = 1; j <= n; ++j) {  if (s1[i - 1] === s2[j - 1])  dp[i][j] = dp[i - 1][j - 1] + 1;  else  dp[i][j]  = Math.max(dp[i - 1][j] dp[i][j - 1]);  }  }  // dp[m][n] contains length of LCS for s1[0..m-1] and  // s2[0..n-1]  return dp[m][n]; } function minOperations(s1 s2) {  let m = s1.length;  let n = s2.length;  // the length of the LCS for s1[0..m-1] and s2[0..n-1]  let len = lcs(s1 s2);  // Characters to delete from s1  let minDeletions = m - len;  // Characters to insert into s1  let minInsertions = n - len;  // Total operations needed  return minDeletions + minInsertions; } let s1 = 'AGGTAB'; let s2 = 'GXTXAYB'; let res = minOperations(s1 s2); console.log(res); 

Wyjście
5

Korzystanie z DP od dołu do góry (optymalizacja przestrzeni) – O(n^2) czasu i O(n) przestrzeni

W poprzednim podejściu najdłuższy wspólny podciąg (LCS) wykorzystuje algorytm O(n * n) miejsce do przechowywania całości tabela dp . Ponieważ jednak każda wartość w dp[i]j ] zależy tylko od bieżący wiersz i poprzedni rząd nie musimy przechowywać całego stołu. Można to zoptymalizować, przechowując tylko bieżące i poprzednie wiersze. Więcej szczegółów znajdziesz w Zoptymalizowane pod względem przestrzennym rozwiązanie LCS .

C++
// C++ program to find the minimum of insertion and deletion // using space optimized. #include    using namespace std; int lcs(string &s1 string &s2) {    int m = s1.length() n = s2.length();  vector<vector<int>> dp(2 vector<int>(n + 1));  for (int i = 0; i <= m; i++) {  // Compute current binary index. If i is even  // then curr = 0 else 1  bool curr = i & 1;  for (int j = 0; j <= n; j++) {    // Initialize first row and first column with 0  if (i == 0 || j == 0)  dp[curr][j] = 0;  else if (s1[i - 1] == s2[j - 1])  dp[curr][j] = dp[1 - curr][j - 1] + 1;  else  dp[curr][j] = max(dp[1 - curr][j] dp[curr][j - 1]);  }  }  return dp[m & 1][n]; } int minOperations(string s1 string s2) {  int m = s1.size();  int n = s2.size();  // the length of the LCS for s1[0..m-1] and s2[0..n-1]  int len = lcs(s1 s2);  // Characters to delete from s1  int minDeletions = m - len;  // Characters to insert into s1  int minInsertions = n - len;  // Total operations needed  int total = minDeletions + minInsertions;  return total; } int main() {  string s1 = 'AGGTAB';  string s2 = 'GXTXAYB';  int res = minOperations(s1 s2);  cout << res;  return 0; } 
Java
// Java program to find the minimum of insertion and // deletion using space optimized. class GfG {    static int lcs(String s1 String s2) {    int m = s1.length();  int n = s2.length();  // Initializing a 2D array with size (2) x (n + 1)  int[][] dp = new int[2][n + 1];  for (int i = 0; i <= m; i++) {  // Compute current binary index. If i is even  // then curr = 0 else 1  int curr = i % 2;  for (int j = 0; j <= n; j++) {    // Initialize first row and first column  // with 0  if (i == 0 || j == 0)  dp[curr][j] = 0;  else if (s1.charAt(i - 1)  == s2.charAt(j - 1))  dp[curr][j] = dp[1 - curr][j - 1] + 1;  else  dp[curr][j] = Math.max(dp[1 - curr][j]  dp[curr][j - 1]);  }  }  return dp[m % 2][n];  }  static int minOperations(String s1 String s2) {    int m = s1.length();  int n = s2.length();  // the length of the LCS for s1[0..m-1] and  // s2[0..n-1]  int len = lcs(s1 s2);  // Characters to delete from s1  int minDeletions = m - len;  // Characters to insert into s1  int minInsertions = n - len;  // Total operations needed  return minDeletions + minInsertions;  }  public static void main(String[] args) {    String s1 = 'AGGTAB';  String s2 = 'GXTXAYB';  int res = minOperations(s1 s2);  System.out.println(res);  } } 
Python
# Python program to find the minimum of insertion and deletion # using space optimized. def lcs(s1 s2): m = len(s1) n = len(s2) # Initializing a matrix of size (2)*(n+1) dp = [[0] * (n + 1) for _ in range(2)] for i in range(m + 1): # Compute current binary index. If i is even # then curr = 0 else 1 curr = i % 2 for j in range(n + 1): # Initialize first row and first column with 0 if i == 0 or j == 0: dp[curr][j] = 0 # If the last characters of both substrings match elif s1[i - 1] == s2[j - 1]: dp[curr][j] = dp[1 - curr][j - 1] + 1 # If the last characters do not match # find the maximum LCS length by: # 1. Excluding the last character of s1 # 2. Excluding the last character of s2 else: dp[curr][j] = max(dp[1 - curr][j] dp[curr][j - 1]) # dp[m & 1][n] contains length of LCS for s1[0..m-1] and s2[0..n-1] return dp[m % 2][n] def minOperations(s1 s2): m = len(s1) n = len(s2) # the length of the LCS for s1[0..m-1] and s2[0..n-1] length = lcs(s1 s2) # Characters to delete from s1 minDeletions = m - length # Characters to insert into s1 minInsertions = n - length # Total operations needed return minDeletions + minInsertions s1 = 'AGGTAB' s2 = 'GXTXAYB' res = minOperations(s1 s2) print(res) 
C#
// C# program to find the minimum of insertion and deletion // using space optimized. using System; class GfG {  static int lcs(string s1 string s2) {    int m = s1.Length;  int n = s2.Length;  // Initializing a matrix of size (2)*(n+1)  int[][] dp = new int[2][];  dp[0] = new int[n + 1];  dp[1] = new int[n + 1];  for (int i = 0; i <= m; i++) {    // Compute current binary index. If i is even  // then curr = 0 else 1  int curr = i % 2;  for (int j = 0; j <= n; j++) {    // Initialize first row and first column  // with 0  if (i == 0 || j == 0)  dp[curr][j] = 0;  // If the last characters of both substrings  // match  else if (s1[i - 1] == s2[j - 1])  dp[curr][j] = dp[1 - curr][j - 1] + 1;  // If the last characters do not match  // find the maximum LCS length by:  // 1. Excluding the last character of s1  // 2. Excluding the last character of s2  else  dp[curr][j] = Math.Max(dp[1 - curr][j]  dp[curr][j - 1]);  }  }  // dp[m & 1][n] contains length of LCS for  // s1[0..m-1] and s2[0..n-1]  return dp[m % 2][n];  }  static int minOperations(string s1 string s2) {    int m = s1.Length;  int n = s2.Length;  // the length of the LCS for s1[0..m-1] and  // s2[0..n-1]  int length = lcs(s1 s2);  // Characters to delete from s1  int minDeletions = m - length;  // Characters to insert into s1  int minInsertions = n - length;  // Total operations needed  return minDeletions + minInsertions;  }  static void Main(string[] args) {    string s1 = 'AGGTAB';  string s2 = 'GXTXAYB';  int res = minOperations(s1 s2);  Console.WriteLine(res);  } } 
JavaScript
// JavaScript program to find the minimum of insertion and // deletion using space optimized. function lcs(s1 s2) {  const m = s1.length;  const n = s2.length;  // Initializing a matrix of size (2)*(n+1)  const dp  = Array(2).fill().map(() => Array(n + 1).fill(0));  for (let i = 0; i <= m; i++) {    // Compute current binary index. If i is even  // then curr = 0 else 1  const curr = i % 2;  for (let j = 0; j <= n; j++) {    // Initialize first row and first column with 0  if (i === 0 || j === 0)  dp[curr][j] = 0;  // If the last characters of both substrings  // match  else if (s1[i - 1] === s2[j - 1])  dp[curr][j] = dp[1 - curr][j - 1] + 1;  // If the last characters do not match  // find the maximum LCS length by:  // 1. Excluding the last character of s1  // 2. Excluding the last character of s2  else  dp[curr][j] = Math.max(dp[1 - curr][j]  dp[curr][j - 1]);  }  }  // dp[m & 1][n] contains length of LCS for s1[0..m-1]  // and s2[0..n-1]  return dp[m % 2][n]; } function minOperations(s1 s2) {  const m = s1.length;  const n = s2.length;  // the length of the LCS for s1[0..m-1] and s2[0..n-1]  const length = lcs(s1 s2);  // Characters to delete from s1  const minDeletions = m - length;  // Characters to insert into s1  const minInsertions = n - length;  // Total operations needed  return minDeletions + minInsertions; } const s1 = 'AGGTAB'; const s2 = 'GXTXAYB'; const res = minOperations(s1 s2); console.log(res); 

Wyjście
5
Utwórz quiz