logo

Rozwinięta lista połączona | Zestaw 1 (Wprowadzenie)

Podobnie jak tablica i lista połączona, rozwinięta lista połączona jest również liniową strukturą danych i jest wariantem listy połączonej. 

Dlaczego potrzebujemy rozwiniętej listy połączonej?

Jedną z największych zalet list połączonych w porównaniu z tablicami jest to, że wstawienie elementu w dowolnym miejscu zajmuje tylko O(1). Jednak haczyk polega na tym, że przeszukanie elementu na połączonej liście wymaga O(n). Aby więc rozwiązać problem wyszukiwania, czyli skrócić czas wyszukiwania elementu, zaproponowano koncepcję rozwijanych list połączonych. Rozwinięta lista połączona obejmuje zalety zarówno tablicy, jak i listy połączonej, ponieważ zmniejsza obciążenie pamięci w porównaniu z prostymi listami połączonymi, przechowując wiele elementów w każdym węźle, a także ma tę zaletę, że umożliwia szybkie wstawianie i usuwanie, jak w przypadku listy połączonej.



Rozwinięta lista połączona | Zestaw 1 (Wprowadzenie) rozwinięta lista linków' title=

Zalety:

  • Ze względu na zachowanie pamięci podręcznej wyszukiwanie liniowe jest znacznie szybsze na rozwijanych listach połączonych.
  • W porównaniu do zwykłej listy połączonej wymaga mniej miejsca na wskaźniki/odniesienia.
  • Wykonuje operacje takie jak wstawianie, usuwanie i przeglądanie szybciej niż zwykłe listy połączone (ponieważ wyszukiwanie jest szybsze).

Wady:

  • Narzut na węzeł jest stosunkowo wysoki niż w przypadku list pojedynczo połączonych. Zapoznaj się z przykładowym węzłem w poniższym kodzie

Przykład: Powiedzmy, że mamy 8 elementów, więc sqrt(8)=2,82, co zaokrągla do 3. Zatem każdy blok będzie przechowywać 3 elementy. Zatem do przechowywania 8 elementów zostaną utworzone 3 bloki, z których pierwsze dwa bloki będą przechowywać 3 elementy, a ostatni blok będzie przechowywać 2 elementy.

W jaki sposób wyszukiwanie staje się lepsze na rozwijanych listach połączonych?

Biorąc więc powyższy przykład, jeśli chcemy wyszukać 7. element na liście, przechodzimy przez listę bloków do tego, który zawiera 7. element. Zajmuje tylko O(sqrt(n)), ponieważ znaleźliśmy to, przechodząc nie więcej niż sqrt(n) bloków. 

Prosta implementacja:

Poniższy program tworzy prostą, rozwiniętą listę połączoną z 3 węzłami zawierającymi zmienną liczbę elementów w każdym. Przechodzi także przez utworzoną listę.

C++
// C++ program to implement unrolled linked list  // and traversing it.  #include    using namespace std; #define maxElements 4  // Unrolled Linked List Node  class Node  {   public:  int numElements;   int array[maxElements];   Node *next;  };  /* Function to traverse an unrolled linked list  and print all the elements*/ void printUnrolledList(Node *n)  {   while (n != NULL)   {   // Print elements in current node   for (int i=0; i<n->numElements; i++)   cout<<n->array[i]<<' ';   // Move to next node   n = n->next;   }  }  // Program to create an unrolled linked list  // with 3 Nodes  int main()  {   Node* head = NULL;   Node* second = NULL;   Node* third = NULL;   // allocate 3 Nodes   head = new Node();  second = new Node();  third = new Node();  // Let us put some values in second node (Number   // of values must be less than or equal to   // maxElement)   head->numElements = 3;   head->array[0] = 1;   head->array[1] = 2;   head->array[2] = 3;   // Link first Node with the second Node   head->next = second;   // Let us put some values in second node (Number   // of values must be less than or equal to   // maxElement)   second->numElements = 3;   second->array[0] = 4;   second->array[1] = 5;   second->array[2] = 6;   // Link second Node with the third Node   second->next = third;   // Let us put some values in third node (Number   // of values must be less than or equal to   // maxElement)   third->numElements = 3;   third->array[0] = 7;   third->array[1] = 8;   third->array[2] = 9;   third->next = NULL;   printUnrolledList(head);   return 0;  }  // This is code is contributed by rathbhupendra 
C
// C program to implement unrolled linked list // and traversing it. #include #include #define maxElements 4 // Unrolled Linked List Node struct Node {  int numElements;  int array[maxElements];  struct Node *next; }; /* Function to traverse an unrolled linked list  and print all the elements*/ void printUnrolledList(struct Node *n) {  while (n != NULL)  {  // Print elements in current node  for (int i=0; i<n->numElements; i++)  printf('%d ' n->array[i]);  // Move to next node   n = n->next;  } } // Program to create an unrolled linked list // with 3 Nodes int main() {  struct Node* head = NULL;  struct Node* second = NULL;  struct Node* third = NULL;  // allocate 3 Nodes  head = (struct Node*)malloc(sizeof(struct Node));  second = (struct Node*)malloc(sizeof(struct Node));  third = (struct Node*)malloc(sizeof(struct Node));  // Let us put some values in second node (Number  // of values must be less than or equal to  // maxElement)  head->numElements = 3;  head->array[0] = 1;  head->array[1] = 2;  head->array[2] = 3;  // Link first Node with the second Node  head->next = second;  // Let us put some values in second node (Number  // of values must be less than or equal to  // maxElement)  second->numElements = 3;  second->array[0] = 4;  second->array[1] = 5;  second->array[2] = 6;  // Link second Node with the third Node  second->next = third;  // Let us put some values in third node (Number  // of values must be less than or equal to  // maxElement)  third->numElements = 3;  third->array[0] = 7;  third->array[1] = 8;  third->array[2] = 9;  third->next = NULL;  printUnrolledList(head);  return 0; } 
Java
// Java program to implement unrolled // linked list and traversing it.  import java.util.*; class GFG{   static final int maxElements = 4; // Unrolled Linked List Node  static class Node  {   int numElements;   int []array = new int[maxElements];   Node next;  };  // Function to traverse an unrolled  // linked list and print all the elements static void printUnrolledList(Node n)  {   while (n != null)   {     // Print elements in current node   for(int i = 0; i < n.numElements; i++)   System.out.print(n.array[i] + ' ');   // Move to next node   n = n.next;   }  }  // Program to create an unrolled linked list  // with 3 Nodes  public static void main(String[] args)  {   Node head = null;   Node second = null;   Node third = null;   // Allocate 3 Nodes   head = new Node();  second = new Node();  third = new Node();  // Let us put some values in second   // node (Number of values must be   // less than or equal to maxElement)   head.numElements = 3;   head.array[0] = 1;   head.array[1] = 2;   head.array[2] = 3;   // Link first Node with the   // second Node   head.next = second;   // Let us put some values in   // second node (Number of values  // must be less than or equal to   // maxElement)   second.numElements = 3;   second.array[0] = 4;   second.array[1] = 5;   second.array[2] = 6;   // Link second Node with the third Node   second.next = third;   // Let us put some values in third   // node (Number of values must be  // less than or equal to maxElement)   third.numElements = 3;   third.array[0] = 7;   third.array[1] = 8;   third.array[2] = 9;   third.next = null;   printUnrolledList(head);  }  }  // This code is contributed by amal kumar choubey  
Python3
# Python3 program to implement unrolled # linked list and traversing it.  maxElements = 4 # Unrolled Linked List Node  class Node: def __init__(self): self.numElements = 0 self.array = [0 for i in range(maxElements)] self.next = None # Function to traverse an unrolled linked list  # and print all the elements def printUnrolledList(n): while (n != None): # Print elements in current node  for i in range(n.numElements): print(n.array[i] end = ' ') # Move to next node  n = n.next # Driver Code if __name__=='__main__': head = None second = None third = None # Allocate 3 Nodes  head = Node() second = Node() third = Node() # Let us put some values in second # node (Number of values must be  # less than or equal to  # maxElement)  head.numElements = 3 head.array[0] = 1 head.array[1] = 2 head.array[2] = 3 # Link first Node with the second Node  head.next = second # Let us put some values in second node # (Number of values must be less than # or equal to maxElement)  second.numElements = 3 second.array[0] = 4 second.array[1] = 5 second.array[2] = 6 # Link second Node with the third Node  second.next = third # Let us put some values in third node # (Number of values must be less than  # or equal to maxElement)  third.numElements = 3 third.array[0] = 7 third.array[1] = 8 third.array[2] = 9 third.next = None printUnrolledList(head) # This code is contributed by rutvik_56 
C#
// C# program to implement unrolled // linked list and traversing it.  using System; class GFG{   static readonly int maxElements = 4; // Unrolled Linked List Node  class Node  {   public int numElements;   public int []array = new int[maxElements];   public Node next;  };  // Function to traverse an unrolled  // linked list and print all the elements static void printUnrolledList(Node n)  {   while (n != null)   {   // Print elements in current node   for(int i = 0; i < n.numElements; i++)   Console.Write(n.array[i] + ' ');   // Move to next node   n = n.next;   }  }  // Program to create an unrolled linked list  // with 3 Nodes  public static void Main(String[] args)  {   Node head = null;   Node second = null;   Node third = null;   // Allocate 3 Nodes   head = new Node();  second = new Node();  third = new Node();  // Let us put some values in second   // node (Number of values must be   // less than or equal to maxElement)   head.numElements = 3;   head.array[0] = 1;   head.array[1] = 2;   head.array[2] = 3;   // Link first Node with the   // second Node   head.next = second;   // Let us put some values in   // second node (Number of values  // must be less than or equal to   // maxElement)   second.numElements = 3;   second.array[0] = 4;   second.array[1] = 5;   second.array[2] = 6;   // Link second Node with the third Node   second.next = third;   // Let us put some values in third   // node (Number of values must be  // less than or equal to maxElement)   third.numElements = 3;   third.array[0] = 7;   third.array[1] = 8;   third.array[2] = 9;   third.next = null;   printUnrolledList(head);  }  }  // This code is contributed by Rajput-Ji  
JavaScript
<script>  // JavaScript program to implement unrolled  // linked list and traversing it.  const maxElements = 4;  // Unrolled Linked List Node  class Node {  constructor() {  this.numElements = 0;  this.array = new Array(maxElements);  this.next = null;  }  }  // Function to traverse an unrolled  // linked list and print all the elements  function printUnrolledList(n) {  while (n != null) {  // Print elements in current node  for (var i = 0; i < n.numElements; i++)  document.write(n.array[i] + ' ');  // Move to next node  n = n.next;  }  }  // Program to create an unrolled linked list  // with 3 Nodes  var head = null;  var second = null;  var third = null;  // Allocate 3 Nodes  head = new Node();  second = new Node();  third = new Node();  // Let us put some values in second  // node (Number of values must be  // less than or equal to maxElement)  head.numElements = 3;  head.array[0] = 1;  head.array[1] = 2;  head.array[2] = 3;  // Link first Node with the  // second Node  head.next = second;  // Let us put some values in  // second node (Number of values  // must be less than or equal to  // maxElement)  second.numElements = 3;  second.array[0] = 4;  second.array[1] = 5;  second.array[2] = 6;  // Link second Node with the third Node  second.next = third;  // Let us put some values in third  // node (Number of values must be  // less than or equal to maxElement)  third.numElements = 3;  third.array[0] = 7;  third.array[1] = 8;  third.array[2] = 9;  third.next = null;  printUnrolledList(head);   </script> 

Wyjście
1 2 3 4 5 6 7 8 9 

Analiza złożoności:

    Złożoność czasowa: O(n). Złożoność przestrzeni: O(n).

W tym artykule przedstawiliśmy listę rozwijaną i jej zalety. Pokazaliśmy także, jak poruszać się po liście. W następnym artykule szczegółowo omówimy usuwanie wstawiania i wartości maxElements/numElements.

Wstawienie na rozwiniętą listę połączoną