logo

Ile wynosi 6 do potęgi czwartej?

Matematyka to nie tylko liczby, ale także radzenie sobie z różnymi obliczeniami z udziałem liczb i zmiennych. To jest to, co w zasadzie nazywa się algebrą. Algebra jest definiowana jako reprezentacja obliczeń obejmujących wyrażenia matematyczne składające się z liczb, operatorów i zmiennych. Liczby mogą wynosić od 0 do 9, operatory to operatory matematyczne, takie jak +, -, ×, ÷, wykładniki itp., Zmienne takie jak x, y, z itp.

Potęgi i potęgi

Potęgi i potęgi to podstawowe operatory używane w obliczeniach matematycznych, wykładniki służą do uproszczenia skomplikowanych obliczeń obejmujących wielokrotne samomnożenie, samomnożenie to w zasadzie liczby pomnożone przez siebie. Na przykład 7 × 7 × 7 × 7 × 7 można po prostu zapisać jako 75. Tutaj 7 to wartość podstawowa, 5 to wykładnik, a wartość wynosi 16807. 11 × 11 × 11 można zapisać jako 113, tutaj 11 to wartość podstawowa, a 3 to wykładnik lub potęga 11. Wartość 113jest 1331.



Wykładnik definiuje się jako potęgę nadawaną liczbie, czyli liczbę jej pomnożenia przez samą siebie. Jeśli wyrażenie jest zapisane jako cxIgdzie c jest stałą, c jest współczynnikiem, x jest podstawą, a y jest wykładnikiem. Jeśli liczba powiedzmy p zostanie pomnożona n razy, n będzie wykładnikiem p. Będzie napisane tak,

p × p × p × p… n razy = pN

rozmiar tekstu lateksowego

Podstawowe zasady wykładników



Istnieją pewne podstawowe zasady zdefiniowane dla wykładników w celu rozwiązywania wyrażeń wykładniczych wraz z innymi operacjami matematycznymi, na przykład, jeśli istnieje iloczyn dwóch wykładników, można to uprościć, aby ułatwić obliczenia i jest to znane jako reguła iloczynu, przyjrzyjmy się niektórym podstawowym zasadom wykładników,

  • Zasada produktu ⇢ aN+ zaM= zan + m
  • Reguła ilorazu ⇢ aN/ AM= zan – m
  • Reguła mocy ⇢ (aN)M= zan × mLubM√aN= zan/m
  • Reguła wykładnika ujemnego ⇢ a-M= 1/rM
  • Zasada zera ⇢ a0= 1
  • Jedna zasada ⇢ a1= za

Ile wynosi 6 do potęgi czwartej?

Rozwiązanie:

Dowolną liczbę mającą potęgę 4 można zapisać jako dwukwadrat lub ćwiartkę tej liczby. Kwartał liczby to liczba pomnożona przez siebie czterokrotnie, czwarta potęga liczby jest przedstawiana jako wykładnik 4 tej liczby. Jeśli trzeba zapisać ćwiartkę x, będzie to x4. Na przykład ćwiartka liczby 5 jest reprezentowana jako liczba 54i jest równe 5 × 5 × 5 × 5 = 625. Innym przykładem może być ćwiartka liczby 12, reprezentowana jako 124, jest równe 12 × 12 × 12 × 12 = 20736.
Wróćmy do opisu problemu i zrozummy, jak zostanie on rozwiązany, w opisie problemu proszono o uproszczenie 6 do potęgi czwartej. Oznacza to, że pytanie wymaga rozwiązania ćwiartki liczby 6, która jest reprezentowana jako 64,



64= 6 × 6 × 6 × 6

= 36 × 36

= 1296

Dlatego 1296 jest 4tpotęga 6.

Przykładowy problem

Pytanie 1: Rozwiąż wyrażenie, 43- 13.

Rozwiązanie:

Aby rozwiązać wyrażenie, najpierw rozwiąż zadanie 3r & Dpotęguje liczby, a następnie odejmuje drugi wyraz przez pierwszy wyraz. Jednak ten sam problem można rozwiązać w łatwiejszy sposób, po prostu stosując formułę, formuła jest następująca:

X3- I3= (x – y)(x2+ y2 + xy)

43- 13= (9 – 7)(42+ 12+ 4 × 1)

Zainicjuj listę Pythona

= 2 × (16 + 1 + 4)

= 2 × 21

= 42

Pytanie 2: Rozwiąż wyrażenie, 133.

Rozwiązanie:

Aby rozwiązać wyrażenie, rozwiąż zadanie 3r & Dpotęga 13,

133= 13 × 13 × 13

= 2197

Pytanie 3: Rozwiąż wyrażenie, 33+ 93.

Rozwiązanie:

Aby rozwiązać wyrażenie, najpierw rozwiąż zadanie 3r & Dpotęguje liczby, a następnie odejmuje drugi wyraz przez pierwszy wyraz. Jednak ten sam problem można rozwiązać w łatwiejszy sposób, po prostu stosując formułę, formuła jest następująca:

X3+ i3= (x + y)(x2+ i2– xy)

33+ 93= (9 + 7)(32+ 92– 3×9)

string.compare C#

= 16 × (9 + 81 + 27)

= 16 × 117

= 1872