logo

Odległość najbliższej komórki mającej 1 w macierzy binarnej

Wypróbuj w praktyce GfG ' title=

Biorąc pod uwagę plik binarny siatka[][] . Znajdź odległość najbliższego 1 w siatce dla każdej komórki.
Odległość jest obliczana jako  |tj 1   - I 2 | + |j 1  - J 2 | gdzie ja1J1 to numer wiersza i numer kolumny bieżącej komórki oraz i2J2 to numer wiersza i numer kolumny najbliższej komórki o wartości 1. 

interfejs w Javie

Notatka: W siatce powinna znajdować się co najmniej jedna komórka o wartości 1.

Przykłady:



Wejście: siatka[][] = [[0 1 1 0]
[1 1 0 0]
[0 0 1 1]]
Wyjście: [[1 0 0 1]
[0 0 1 1]
[1 1 0 0]]
Wyjaśnienie:
komórka (0 1) ma najbliższą 1 w komórce (0 0) - odległość = |0-0| + |0-1| = 1
komórka (0 2) ma najbliższą 1 w komórce (0 3) - odległość = |0-0| + |3-2| = 1
komórka (1 0) ma najbliższą 1 w komórce (0 0) - odległość = |1-0| + |0-0| = 1
komórka (1 1) ma najbliższą 1 w komórce (1 2) - odległość = |1-1| + |1-2| = 1
komórka (2 2) ma najbliższą 1 w komórce (2 1) - odległość = |2-2| + |2-1| = 1
komórka (2 3) ma najbliższą 1 w komórce (1 3) - odległość = |2-1| + |3-3| = 1
Reszta to komórki mające 1, więc ich odległość od najbliższej komórki mającej 1 wynosi 0.

Wejście: siatka[][] = [[1 0 1]
[1 1 0]
[1 0 0]]
Wyjście: [[0 1 0]
[0 0 1]
[0 1 2]]
Wyjaśnienie:
komórka (0 0) ma najbliższą 1 w komórce (0 1) - odległość = |0-0| + |0-1| = 1
komórka (0 2) ma najbliższą 1 w komórce (0 1) - odległość = |0-0| + |2-1| = 1
komórka (1 0) ma najbliższą 1 w komórce (0 1) - odległość = |1-0| + |0-1| = 2
komórka (1 1) ma najbliższą 1 w komórce (1 2) - odległość = |1-1| + |1-2| = 1
komórka (2 0) ma najbliższą 1 w komórce (2 1) - odległość = |2-2| + |2-1| = 1
komórka (2 2) ma najbliższą 1 w komórce (2 1) - odległość = |2-2| + |2-1| = 1
Reszta to komórki mające 1, więc ich odległość od najbliższej komórki mającej 1 wynosi 0.

Spis treści

[Podejście naiwne] - O((n*m)^2) Czas i O(n * m) Przestrzeń

Pomysł polega na tym, aby przejść przez całą siatkę i obliczyć odległość każdej komórki z dokładnością do 1:

  • Jeśli komórka zawiera 1, jej odległość wynosi 0.
  • Jeśli komórka zawiera 0, przemierzamy całą siatkę, aby znaleźć najbliższą komórkę zawierającą 1.
  • Dla każdej komórki 0 oblicz odległość Manhattanu do wszystkich komórek z liczbą 1 i przyjmij odległość minimalną.

Zapisz tę minimalną odległość w odpowiedniej komórce macierzy wyników. Powtórz tę czynność dla wszystkich komórek siatki.

C++
//Driver Code Starts #include  #include    #include  using namespace std; //Driver Code Ends  vector<vector<int>> nearest(vector<vector<int>> &grid) {  int n = grid.size();  int m = grid[0].size();  vector<vector<int>> ans(n vector<int>(m INT_MAX));  // visit each cell of the grid  for (int i = 0; i < n; i++)  {  for (int j = 0; j < m; j++)  {  // if the cell has 1  // then the distance is 0  if (grid[i][j] == 1)  {  ans[i][j] = 0;  continue;  }  // iterate over all the cells  // and find the distance of the nearest 1  for (int k = 0; k < n; k++)  {  for (int l = 0; l < m; l++)  {  if (grid[k][l] == 1)  {  ans[i][j] = min(ans[i][j] abs(i - k) + abs(j - l));  }  }  }  }  }  return ans; }  //Driver Code Starts int main() {  vector<vector<int>> grid = {{0 1 1 0} {1 1 0 0} {0 0 1 1}};  vector<vector<int>> ans = nearest(grid);  for (int i = 0; i < ans.size(); i++)  {  for (int j = 0; j < ans[i].size(); j++)  {  cout << ans[i][j] << ' ';  }  cout << endl;  }  return 0; } //Driver Code Ends 
Java
//Driver Code Starts import java.util.ArrayList; class GFG { //Driver Code Ends   static ArrayList<ArrayList<Integer>>nearest(int[][] grid)  {  int n = grid.length;  int m = grid[0].length;  ArrayList<ArrayList<Integer> > ans  = new ArrayList<>();  // initialize all cells with maximum value  for (int i = 0; i < n; i++) {  ArrayList<Integer> row = new ArrayList<>();  for (int j = 0; j < m; j++) {  row.add(Integer.MAX_VALUE);  }  ans.add(row);  }  // visit each cell of the grid  for (int i = 0; i < n; i++) {  for (int j = 0; j < m; j++) {  // if the cell has 1 distance is 0  if (grid[i][j] == 1) {  ans.get(i).set(j 0);  continue;  }  // iterate over all cells to find nearest 1  for (int k = 0; k < n; k++) {  for (int l = 0; l < m; l++) {  if (grid[k][l] == 1) {  int distance  = Math.abs(i - k)  + Math.abs(j - l);  if (distance  < ans.get(i).get(j)) {  ans.get(i).set(j distance);  }  }  }  }  }  }  return ans;  }  //Driver Code Starts  public static void main(String[] args)  {  int[][] grid = { { 0 1 1 0 }  { 1 1 0 0 }  { 0 0 1 1 } };  ArrayList<ArrayList<Integer> > ans = nearest(grid);  for (ArrayList<Integer> row : ans) {  for (Integer val : row) {  System.out.print(val + ' ');  }  System.out.println();  }  } } //Driver Code Ends 
Python
def nearest(grid): n = len(grid) m = len(grid[0]) ans = [[float('inf')] * m for _ in range(n)] # visit each cell of the grid for i in range(n): for j in range(m): # if the cell has 1 # then the distance is 0 if grid[i][j] == 1: ans[i][j] = 0 continue # iterate over all the cells # and find the distance of the nearest 1 for k in range(n): for l in range(m): if grid[k][l] == 1: ans[i][j] = min(ans[i][j] abs(i - k) + abs(j - l)) return ans   #Driver Code Starts if __name__ == '__main__': grid = [[0 1 1 0] [1 1 0 0] [0 0 1 1]] ans = nearest(grid) for i in range(len(ans)): for j in range(len(ans[i])): print(ans[i][j] end=' ') print() #Driver Code Ends 
C#
//Driver Code Starts using System; using System.Collections.Generic; class GfG { //Driver Code Ends   static List<List<int> > nearest(int[ ] grid)  {  int n = grid.GetLength(0);  int m = grid.GetLength(1);  List<List<int> > ans = new List<List<int> >();  for (int i = 0; i < n; i++) {  List<int> row = new List<int>();  for (int j = 0; j < m; j++) {  row.Add(int.MaxValue);  }  ans.Add(row);  }  // Visit each cell of the grid  for (int i = 0; i < n; i++) {  for (int j = 0; j < m; j++) {  // If the cell has 1 distance is 0  if (grid[i j] == 1) {  ans[i][j] = 0;  continue;  }  // iterate over all the cells  // and find the distance of the nearest 1  for (int k = 0; k < n; k++) {  for (int l = 0; l < m; l++) {  if (grid[k l] == 1) {  int distance  = Math.Abs(i - k)  + Math.Abs(j - l);  if (distance < ans[i][j]) {  ans[i][j] = distance;  }  }  }  }  }  }  return ans;  }  //Driver Code Starts  static void Main()  {  int[ ] grid = { { 0 1 1 0 }  { 1 1 0 0 }  { 0 0 1 1 } };  List<List<int> > ans = nearest(grid);  for (int i = 0; i < ans.Count; i++) {  for (int j = 0; j < ans[i].Count; j++) {  Console.Write(ans[i][j] + ' ');  }  Console.WriteLine();  }  } } //Driver Code Ends 
JavaScript
function nearest(grid) {  let n = grid.length;  let m = grid[0].length;  let ans = new Array(n);  for (let i = 0; i < n; i++) {  ans[i] = new Array(m).fill(Infinity);  }  // visit each cell of the grid  for (let i = 0; i < n; i++) {  for (let j = 0; j < m; j++) {  // if the cell has 1  // then the distance is 0  if (grid[i][j] === 1) {  ans[i][j] = 0;  continue;  }  // iterate over all the cells  // and find the distance of the nearest 1  for (let k = 0; k < n; k++) {  for (let l = 0; l < m; l++) {  if (grid[k][l] === 1) {  ans[i][j] = Math.min(  ans[i][j]  Math.abs(i - k)  + Math.abs(j - l));  }  }  }  }  }  return ans; }  // Driver Code //Driver Code Starts let grid =  [ [ 0 1 1 0 ] [ 1 1 0 0 ] [ 0 0 1 1 ] ]; let ans = nearest(grid); for (let i = 0; i < ans.length; i++) {  console.log(ans[i].join(' ')); } //Driver Code Ends 

Wyjście
1 0 0 1 0 0 1 1 1 1 0 0 

[Podejście oczekiwane] — Korzystanie z wyszukiwania wszerz — O(n * m) czasu i O(n * m) przestrzeni

Problem można skutecznie rozwiązać, stosując podejście BFS z wieloma źródłami. Każda komórka siatki traktowana jest jako węzeł, którego krawędzie łączą sąsiednie komórki (góra, dół, lewy, prawy). Zamiast przeprowadzać oddzielne wyszukiwanie dla każdej komórki 0, kolejkujemy wszystkie komórki zawierające na początku 1 i wykonujemy pojedynczy BFS z tych wielu źródeł jednocześnie. W miarę jak BFS rozwija się warstwa po warstwie, aktualizujemy odległość każdej nieodwiedzonej komórki 0, aby była o jeden większa niż odległość jej rodzica. Gwarantuje to, że każda komórka otrzyma minimalną odległość do najbliższej 1 w optymalny i efektywny sposób.

C++
//Driver Code Starts #include    #include #include #include using namespace std; //Driver Code Ends  vector<vector<int>> nearest(vector<vector<int>> &grid) {  int n = grid.size();  int m = grid[0].size();  vector<vector<int>> ans(n vector<int>(m INT_MAX));  // to store the indices of the cells having 1  queue<pair<int int>> q;  // visit each cell of the grid  for(int i = 0; i<n; i++) {  for(int j = 0; j<m; j++) {  // if the cell has 1   // then the distance is 0  if(grid[i][j] == 1) {  ans[i][j] = 0;  q.push({i j});  }  }  }  // iterate over all the cells  // and find the distance of the nearest 1  while(!q.empty()) {  int len = q.size();    for(int i = 0; i<len; i++) {  int x = q.front().first;  int y = q.front().second;  q.pop();  // check all the four directions  vector<vector<int>> directions =   {{0 1} {0 -1} {1 0} {-1 0}};  for (int j = 0; j < directions.size(); j++) {  int dx = directions[j][0];  int dy = directions[j][1];  // if the cell is within the grid   // and the distance is not calculated yet  if (x+dx >= 0 && x+dx < n && y+dy >= 0 &&   y+dy < m && ans[x+dx][y+dy] == INT_MAX) {  ans[x+dx][y+dy] = ans[x][y] + 1;  q.push({x+dx y+dy});  }  }  }  }  return ans; }  //Driver Code Starts int main() {  vector<vector<int>> grid = {{0110} {1100} {0011}};  vector<vector<int>> ans = nearest(grid);  for (int i = 0; i < ans.size(); i++) {  for (int j = 0; j < ans[i].size(); j++) {  cout << ans[i][j] << ' ';  }  cout << endl;  }  return 0; } //Driver Code Ends 
Java
//Driver Code Starts import java.util.ArrayList; import java.util.Queue; import java.util.LinkedList; import java.util.Arrays; class GfG { //Driver Code Ends   static ArrayList<ArrayList<Integer>> nearest(int[][] grid) {  int n = grid.length;  int m = grid[0].length;  int[][] ans = new int[n][m];  for (int i = 0; i < n; i++) {  Arrays.fill(ans[i] Integer.MAX_VALUE);  }  // to store the indices of the cells having 1  Queue<int[]> q = new LinkedList<>();  // visit each cell of the grid  for (int i = 0; i < n; i++) {  for (int j = 0; j < m; j++) {  // if the cell has 1   // then the distance is 0  if (grid[i][j] == 1) {  ans[i][j] = 0;  q.add(new int[]{i j});  }  }  }  // iterate over all the cells  // and find the distance of the nearest 1  while (!q.isEmpty()) {  int len = q.size();  for (int i = 0; i < len; i++) {  int[] front = q.poll();  int x = front[0];  int y = front[1];  // check all the four directions  int[][] directions = {{0 1} {0 -1} {1 0} {-1 0}};  for (int j = 0; j < directions.length; j++) {  int dx = directions[j][0];  int dy = directions[j][1];  // if the cell is within the grid   // and the distance is not calculated yet  if (x + dx >= 0 && x + dx < n && y + dy >= 0 && y + dy < m  && ans[x + dx][y + dy] == Integer.MAX_VALUE) {  ans[x + dx][y + dy] = ans[x][y] + 1;  q.add(new int[]{x + dx y + dy});  }  }  }  }  ArrayList<ArrayList<Integer>> result = new ArrayList<>();  for (int i = 0; i < n; i++) {  ArrayList<Integer> row = new ArrayList<>();  for (int j = 0; j < m; j++) {  row.add(ans[i][j]);  }  result.add(row);  }  return result;  }  //Driver Code Starts  public static void main(String[] args) {  int[][] grid = {{0110} {1100} {0011}};  ArrayList<ArrayList<Integer>> ans = nearest(grid);  for (ArrayList<Integer> row : ans) {  for (int val : row) {  System.out.print(val + ' ');  }  System.out.println();  }  } } //Driver Code Ends 
Python
#Driver Code Starts from collections import deque import sys #Driver Code Ends  def nearest(grid): n = len(grid) m = len(grid[0]) ans = [[sys.maxsize for _ in range(m)] for _ in range(n)] # to store the indices of the cells having 1 q = deque() # visit each cell of the grid for i in range(n): for j in range(m): # if the cell has 1  # then the distance is 0 if grid[i][j] == 1: ans[i][j] = 0 q.append((i j)) # iterate over all the cells # and find the distance of the nearest 1 while q: len_q = len(q) for _ in range(len_q): x y = q.popleft() # check all the four directions directions = [(0 1) (0 -1) (1 0) (-1 0)] for dx dy in directions: # if the cell is within the grid  # and the distance is not calculated yet if 0 <= x + dx < n and 0 <= y + dy < m and ans[x + dx][y + dy] == sys.maxsize: ans[x + dx][y + dy] = ans[x][y] + 1 q.append((x + dx y + dy)) return ans  #Driver Code Starts if __name__ == '__main__': grid = [[0110] [1100] [0011]] ans = nearest(grid) for row in ans: print(' '.join(map(str row))) #Driver Code Ends 
C#
//Driver Code Starts using System; using System.Collections.Generic; class GFG { //Driver Code Ends   static List<List<int>> nearest(int[] grid)  {  int n = grid.GetLength(0);  int m = grid.GetLength(1);  int[] ans = new int[n m];  for (int i = 0; i < n; i++)  {  for (int j = 0; j < m; j++)  {  ans[i j] = int.MaxValue;  }  }  // to store the indices of the cells having 1  Queue<Tuple<int int>> q = new Queue<Tuple<int int>>();  // visit each cell of the grid  for (int i = 0; i < n; i++)  {  for (int j = 0; j < m; j++)  {  // if the cell has 1   // then the distance is 0  if (grid[i j] == 1)  {  ans[i j] = 0;  q.Enqueue(new Tuple<int int>(i j));  }  }  }  // iterate over all the cells  // and find the distance of the nearest 1  while (q.Count > 0)  {  int len = q.Count;  for (int i = 0; i < len; i++)  {  var node = q.Dequeue();  int x = node.Item1;  int y = node.Item2;  // check all the four directions  int[] directions = new int[]  {  {0 1}  {0 -1}  {1 0}  {-1 0}  };  for (int j = 0; j < 4; j++)  {  int dx = directions[j 0];  int dy = directions[j 1];  // if the cell is within the grid   // and the distance is not calculated yet  if (x + dx >= 0 && x + dx < n && y + dy >= 0 && y + dy < m && ans[x + dx y + dy] == int.MaxValue)  {  ans[x + dx y + dy] = ans[x y] + 1;  q.Enqueue(new Tuple<int int>(x + dx y + dy));  }  }  }  }  // Convert 2D array to List> before returning  List<List<int>> result = new List<List<int>>();  for (int i = 0; i < n; i++)  {  List<int> row = new List<int>();  for (int j = 0; j < m; j++)  {  row.Add(ans[i j]);  }  result.Add(row);  }  return result;  }  //Driver Code Starts  static void Main()  {  int[] grid = new int[]  {  {0 1 1 0}  {1 1 0 0}  {0 0 1 1}  };  List<List<int>> ans = nearest(grid);  for (int i = 0; i < ans.Count; i++)  {  for (int j = 0; j < ans[i].Count; j++)  {  Console.Write(ans[i][j] + ' ');  }  Console.WriteLine();  }  } } //Driver Code Ends 
JavaScript
//Driver Code Starts const Denque = require('denque'); //Driver Code Ends  function nearest(grid) {  let n = grid.length;  let m = grid[0].length;  // Initialize answer matrix with Infinity  let ans = [];  for (let i = 0; i < n; i++) {  ans.push(new Array(m).fill(Infinity));  }  // to store the indices of the cells having 1  let q = new Denque();  // visit each cell of the grid  for (let i = 0; i < n; i++) {  for (let j = 0; j < m; j++) {  // if the cell has 1   // then the distance is 0  if (grid[i][j] === 1) {  ans[i][j] = 0;  q.push([i j]);  }  }  }  // iterate over all the cells  // and find the distance of the nearest 1  while (!q.isEmpty()) {  let [x y] = q.shift();  // check all the four directions  let directions = [  [0 1]  [0 -1]  [1 0]  [-1 0]  ];  for (let dir of directions) {  let dx = dir[0];  let dy = dir[1];  // if the cell is within the grid   // and the distance is not calculated yet  if (x + dx >= 0 && x + dx < n && y + dy >= 0 && y + dy < m && ans[x + dx][y + dy] === Infinity) {  ans[x + dx][y + dy] = ans[x][y] + 1;  q.push([x + dx y + dy]);  }  }  }  return ans; }  //Driver Code Starts // Driver Code let grid = [  [0 1 1 0]  [1 1 0 0]  [0 0 1 1] ]; let ans = nearest(grid); for (let i = 0; i < ans.length; i++) {  console.log(ans[i].join(' ')); } //Driver Code Ends 

Wyjście
1 0 0 1 0 0 1 1 1 1 0 0 
Utwórz quiz