logo

Minimalna liczba kroków potrzebnych do osiągnięcia końca tablicy przy ograniczeniach

Biorąc pod uwagę tablicę zawierającą liczby jednocyfrowe, zakładając, że znajdujemy się na pierwszym indeksie, musimy dotrzeć do końca tablicy przy użyciu minimalnej liczby kroków, gdzie w jednym kroku możemy przeskoczyć do sąsiednich indeksów lub przeskoczyć do pozycji o tej samej wartości.
Innymi słowy, jeśli jesteśmy w indeksie i, to w jednym kroku możesz dotrzeć do arr[i-1] lub arr[i+1] lub arr[K] tak, że arr[K] = arr[i] (wartość arr[K] jest taka sama jak arr[i])

znak do ciągu Java

Przykłady:  

Input : arr[] = {5 4 2 5 0} Output : 2 Explanation : Total 2 step required. We start from 5(0) in first step jump to next 5 and in second step we move to value 0 (End of arr[]). Input : arr[] = [0 1 2 3 4 5 6 7 5 4 3 6 0 1 2 3 4 5 7] Output : 5 Explanation : Total 5 step required. 0(0) -> 0(12) -> 6(11) -> 6(6) -> 7(7) -> (18) (inside parenthesis indices are shown)

Problem ten można rozwiązać za pomocą BFS . Możemy uznać daną tablicę za graf nieważony, w którym każdy wierzchołek ma dwie krawędzie prowadzące do następnego i poprzedniego elementu tablicy oraz więcej krawędzi do elementów tablicy o tych samych wartościach. Teraz do szybkiego przetwarzania trzeciego rodzaju krawędzi zachowujemy 10 wektory które przechowują wszystkie indeksy, w których obecne są cyfry od 0 do 9. W powyższym przykładzie wektor odpowiadający 0 będzie przechowywać [0 12] 2 indeksy, w których w danej tablicy wystąpiło 0. 



Używana jest inna tablica Boolean, abyśmy nie odwiedzali tego samego indeksu więcej niż raz. Ponieważ korzystamy z BFS i BFS osiąga poziom po poziomie, gwarantujemy optymalne minimalne kroki. 

Realizacja:

C++
// C++ program to find minimum jumps to reach end // of array #include    using namespace std; // Method returns minimum step to reach end of array int getMinStepToReachEnd(int arr[] int N) {  // visit boolean array checks whether current index  // is previously visited  bool visit[N];  // distance array stores distance of current  // index from starting index  int distance[N];  // digit vector stores indices where a  // particular number resides  vector<int> digit[10];  // In starting all index are unvisited  memset(visit false sizeof(visit));  // storing indices of each number in digit vector  for (int i = 1; i < N; i++)  digit[arr[i]].push_back(i);  // for starting index distance will be zero  distance[0] = 0;  visit[0] = true;  // Creating a queue and inserting index 0.  queue<int> q;  q.push(0);  // loop until queue in not empty  while(!q.empty())  {  // Get an item from queue q.  int idx = q.front(); q.pop();  // If we reached to last index break from loop  if (idx == N-1)  break;  // Find value of dequeued index  int d = arr[idx];  // looping for all indices with value as d.  for (int i = 0; i<digit[d].size(); i++)  {  int nextidx = digit[d][i];  if (!visit[nextidx])  {  visit[nextidx] = true;  q.push(nextidx);  // update the distance of this nextidx  distance[nextidx] = distance[idx] + 1;  }  }  // clear all indices for digit d because all  // of them are processed  digit[d].clear();  // checking condition for previous index  if (idx-1 >= 0 && !visit[idx - 1])  {  visit[idx - 1] = true;  q.push(idx - 1);  distance[idx - 1] = distance[idx] + 1;  }  // checking condition for next index  if (idx + 1 < N && !visit[idx + 1])  {  visit[idx + 1] = true;  q.push(idx + 1);  distance[idx + 1] = distance[idx] + 1;  }  }  // N-1th position has the final result  return distance[N - 1]; } // driver code to test above methods int main() {  int arr[] = {0 1 2 3 4 5 6 7 5  4 3 6 0 1 2 3 4 5 7};  int N = sizeof(arr) / sizeof(int);  cout << getMinStepToReachEnd(arr N);  return 0; } 
Java
// Java program to find minimum jumps  // to reach end of array import java.util.*; class GFG { // Method returns minimum step  // to reach end of array static int getMinStepToReachEnd(int arr[]   int N) {  // visit boolean array checks whether   // current index is previously visited  boolean []visit = new boolean[N];  // distance array stores distance of   // current index from starting index  int []distance = new int[N];  // digit vector stores indices where a  // particular number resides  Vector<Integer> []digit = new Vector[10];  for(int i = 0; i < 10; i++)  digit[i] = new Vector<>();  // In starting all index are unvisited  for(int i = 0; i < N; i++)  visit[i] = false;  // storing indices of each number  // in digit vector  for (int i = 1; i < N; i++)  digit[arr[i]].add(i);  // for starting index distance will be zero  distance[0] = 0;  visit[0] = true;  // Creating a queue and inserting index 0.  Queue<Integer> q = new LinkedList<>();  q.add(0);  // loop until queue in not empty  while(!q.isEmpty())  {  // Get an item from queue q.  int idx = q.peek();   q.remove();  // If we reached to last   // index break from loop  if (idx == N - 1)  break;  // Find value of dequeued index  int d = arr[idx];  // looping for all indices with value as d.  for (int i = 0; i < digit[d].size(); i++)  {  int nextidx = digit[d].get(i);  if (!visit[nextidx])  {  visit[nextidx] = true;  q.add(nextidx);  // update the distance of this nextidx  distance[nextidx] = distance[idx] + 1;  }  }  // clear all indices for digit d   // because all of them are processed  digit[d].clear();  // checking condition for previous index  if (idx - 1 >= 0 && !visit[idx - 1])  {  visit[idx - 1] = true;  q.add(idx - 1);  distance[idx - 1] = distance[idx] + 1;  }  // checking condition for next index  if (idx + 1 < N && !visit[idx + 1])  {  visit[idx + 1] = true;  q.add(idx + 1);  distance[idx + 1] = distance[idx] + 1;  }  }  // N-1th position has the final result  return distance[N - 1]; } // Driver Code public static void main(String []args) {  int arr[] = {0 1 2 3 4 5 6 7 5  4 3 6 0 1 2 3 4 5 7};  int N = arr.length;  System.out.println(getMinStepToReachEnd(arr N)); } } // This code is contributed by 29AjayKumar 
Python3
# Python 3 program to find minimum jumps to reach end# of array # Method returns minimum step to reach end of array def getMinStepToReachEnd(arrN): # visit boolean array checks whether current index # is previously visited visit = [False for i in range(N)] # distance array stores distance of current # index from starting index distance = [0 for i in range(N)] # digit vector stores indices where a # particular number resides digit = [[0 for i in range(N)] for j in range(10)] # storing indices of each number in digit vector for i in range(1N): digit[arr[i]].append(i) # for starting index distance will be zero distance[0] = 0 visit[0] = True # Creating a queue and inserting index 0. q = [] q.append(0) # loop until queue in not empty while(len(q)> 0): # Get an item from queue q. idx = q[0] q.remove(q[0]) # If we reached to last index break from loop if (idx == N-1): break # Find value of dequeued index d = arr[idx] # looping for all indices with value as d. for i in range(len(digit[d])): nextidx = digit[d][i] if (visit[nextidx] == False): visit[nextidx] = True q.append(nextidx) # update the distance of this nextidx distance[nextidx] = distance[idx] + 1 # clear all indices for digit d because all # of them are processed # checking condition for previous index if (idx-1 >= 0 and visit[idx - 1] == False): visit[idx - 1] = True q.append(idx - 1) distance[idx - 1] = distance[idx] + 1 # checking condition for next index if (idx + 1 < N and visit[idx + 1] == False): visit[idx + 1] = True q.append(idx + 1) distance[idx + 1] = distance[idx] + 1 # N-1th position has the final result return distance[N - 1] # driver code to test above methods if __name__ == '__main__': arr = [0 1 2 3 4 5 6 7 5 4 3 6 0 1 2 3 4 5 7] N = len(arr) print(getMinStepToReachEnd(arr N)) # This code is contributed by # Surendra_Gangwar 
C#
// C# program to find minimum jumps  // to reach end of array  using System; using System.Collections.Generic; class GFG { // Method returns minimum step  // to reach end of array static int getMinStepToReachEnd(int []arr   int N) {  // visit boolean array checks whether   // current index is previously visited  bool []visit = new bool[N];  // distance array stores distance of   // current index from starting index  int []distance = new int[N];  // digit vector stores indices where a  // particular number resides  List<int> []digit = new List<int>[10];  for(int i = 0; i < 10; i++)  digit[i] = new List<int>();  // In starting all index are unvisited  for(int i = 0; i < N; i++)  visit[i] = false;  // storing indices of each number  // in digit vector  for (int i = 1; i < N; i++)  digit[arr[i]].Add(i);  // for starting index distance will be zero  distance[0] = 0;  visit[0] = true;  // Creating a queue and inserting index 0.  Queue<int> q = new Queue<int>();  q.Enqueue(0);  // loop until queue in not empty  while(q.Count != 0)  {  // Get an item from queue q.  int idx = q.Peek();   q.Dequeue();  // If we reached to last   // index break from loop  if (idx == N - 1)  break;  // Find value of dequeued index  int d = arr[idx];  // looping for all indices with value as d.  for (int i = 0; i < digit[d].Count; i++)  {  int nextidx = digit[d][i];  if (!visit[nextidx])  {  visit[nextidx] = true;  q.Enqueue(nextidx);  // update the distance of this nextidx  distance[nextidx] = distance[idx] + 1;  }  }  // clear all indices for digit d   // because all of them are processed  digit[d].Clear();  // checking condition for previous index  if (idx - 1 >= 0 && !visit[idx - 1])  {  visit[idx - 1] = true;  q.Enqueue(idx - 1);  distance[idx - 1] = distance[idx] + 1;  }  // checking condition for next index  if (idx + 1 < N && !visit[idx + 1])  {  visit[idx + 1] = true;  q.Enqueue(idx + 1);  distance[idx + 1] = distance[idx] + 1;  }  }  // N-1th position has the final result  return distance[N - 1]; } // Driver Code public static void Main(String []args) {  int []arr = {0 1 2 3 4 5 6 7 5  4 3 6 0 1 2 3 4 5 7};  int N = arr.Length;  Console.WriteLine(getMinStepToReachEnd(arr N)); } } // This code is contributed by PrinciRaj1992 
JavaScript
<script> // Javascript program to find minimum jumps  // to reach end of array // Method returns minimum step  // to reach end of array function getMinStepToReachEnd(arrN) {  // visit boolean array checks whether   // current index is previously visited  let visit = new Array(N);    // distance array stores distance of   // current index from starting index  let distance = new Array(N);    // digit vector stores indices where a  // particular number resides  let digit = new Array(10);  for(let i = 0; i < 10; i++)  digit[i] = [];    // In starting all index are unvisited  for(let i = 0; i < N; i++)  visit[i] = false;    // storing indices of each number  // in digit vector  for (let i = 1; i < N; i++)  digit[arr[i]].push(i);    // for starting index distance will be zero  distance[0] = 0;  visit[0] = true;    // Creating a queue and inserting index 0.  let q = [];  q.push(0);    // loop until queue in not empty  while(q.length!=0)  {  // Get an item from queue q.  let idx = q.shift();       // If we reached to last   // index break from loop  if (idx == N - 1)  break;    // Find value of dequeued index  let d = arr[idx];    // looping for all indices with value as d.  for (let i = 0; i < digit[d].length; i++)  {  let nextidx = digit[d][i];  if (!visit[nextidx])  {  visit[nextidx] = true;  q.push(nextidx);    // update the distance of this nextidx  distance[nextidx] = distance[idx] + 1;  }  }    // clear all indices for digit d   // because all of them are processed  digit[d]=[];    // checking condition for previous index  if (idx - 1 >= 0 && !visit[idx - 1])  {  visit[idx - 1] = true;  q.push(idx - 1);  distance[idx - 1] = distance[idx] + 1;  }    // checking condition for next index  if (idx + 1 < N && !visit[idx + 1])  {  visit[idx + 1] = true;  q.push(idx + 1);  distance[idx + 1] = distance[idx] + 1;  }  }    // N-1th position has the final result  return distance[N - 1]; } // Driver Code let arr=[0 1 2 3 4 5 6 7 5  4 3 6 0 1 2 3 4 5 7]; let N = arr.length; document.write(getMinStepToReachEnd(arr N));  // This code is contributed by rag2127 </script> 

Wyjście
5

Złożoność czasowa: O(N) gdzie N jest liczbą elementów tablicy.

Złożoność przestrzeni: O(N) gdzie N jest liczbą elementów tablicy. Używamy tablicy odległości i odwiedzin o rozmiarze N oraz kolejki o rozmiarze N do przechowywania indeksów tablicy.