Biorąc pod uwagę ciąg s składający się wyłącznie z małych liter angielskich, znajdź minimum liczba znaków, które muszą być w dodatku do przód of s, aby uczynić go palindromem.
Notatka: Palindrom to ciąg znaków, który czyta się tak samo od przodu i od tyłu.
Przykłady:
15 z 100,00
Wejście : s = „abc”
Wyjście : 2
Wyjaśnienie : Możemy utworzyć palindrom powyżej łańcucha jako „cbabc”, dodając „b” i „c” na początku.Wejście : s = 'aacaaaa'
Wyjście : 2
Wyjaśnienie : Możemy utworzyć palindrom powyżej łańcucha jako „aaaacecaaaa”, dodając dwa a na początku łańcucha.
Spis treści
- [Podejście naiwne] Sprawdzanie wszystkich prefiksów - O(n^2) czasu i O(1) przestrzeni
- [Oczekiwane podejście 1] Korzystanie z tablicy lps algorytmu KMP - czas O(n) i przestrzeń O(n)
- [Oczekiwane podejście 2] Korzystanie z algorytmu Manachera
[Podejście naiwne] Sprawdzanie wszystkich prefiksów - O(n^2) czasu i O(1) przestrzeni
Pomysł opiera się na obserwacji, że musimy znaleźć najdłuższy przedrostek z danego ciągu, który jest również palindromem. Następnie minimalnymi znakami początkowymi, które należy dodać, aby dany łańcuch był palindromem, będą pozostałe znaki.
C++ #include using namespace std; // function to check if the substring s[i...j] is a palindrome bool isPalindrome(string &s int i int j) { while (i < j) { // if characters at the ends are not equal // it's not a palindrome if (s[i] != s[j]) { return false; } i++; j--; } return true; } int minChar(string &s) { int cnt = 0; int i = s.size() - 1; // iterate from the end of the string checking for the // longestpalindrome starting from the beginning while (i >= 0 && !isPalindrome(s 0 i)) { i--; cnt++; } return cnt; } int main() { string s = 'aacecaaaa'; cout << minChar(s); return 0; }
C #include #include #include // function to check if the substring s[i...j] is a palindrome bool isPalindrome(char s[] int i int j) { while (i < j) { // if characters at the ends are not the same // it's not a palindrome if (s[i] != s[j]) { return false; } i++; j--; } return true; } int minChar(char s[]) { int cnt = 0; int i = strlen(s) - 1; // iterate from the end of the string checking for the // longest palindrome starting from the beginning while (i >= 0 && !isPalindrome(s 0 i)) { i--; cnt++; } return cnt; } int main() { char s[] = 'aacecaaaa'; printf('%d' minChar(s)); return 0; }
Java class GfG { // function to check if the substring // s[i...j] is a palindrome static boolean isPalindrome(String s int i int j) { while (i < j) { // if characters at the ends are not the same // it's not a palindrome if (s.charAt(i) != s.charAt(j)) { return false; } i++; j--; } return true; } static int minChar(String s) { int cnt = 0; int i = s.length() - 1; // iterate from the end of the string checking for the // longest palindrome starting from the beginning while (i >= 0 && !isPalindrome(s 0 i)) { i--; cnt++; } return cnt; } public static void main(String[] args) { String s = 'aacecaaaa'; System.out.println(minChar(s)); } }
Python # function to check if the substring s[i...j] is a palindrome def isPalindrome(s i j): while i < j: # if characters at the ends are not the same # it's not a palindrome if s[i] != s[j]: return False i += 1 j -= 1 return True def minChar(s): cnt = 0 i = len(s) - 1 # iterate from the end of the string checking for the # longest palindrome starting from the beginning while i >= 0 and not isPalindrome(s 0 i): i -= 1 cnt += 1 return cnt if __name__ == '__main__': s = 'aacecaaaa' print(minChar(s))
C# using System; class GfG { // function to check if the substring s[i...j] is a palindrome static bool isPalindrome(string s int i int j) { while (i < j) { // if characters at the ends are not the same // it's not a palindrome if (s[i] != s[j]) { return false; } i++; j--; } return true; } static int minChar(string s) { int cnt = 0; int i = s.Length - 1; // iterate from the end of the string checking for the longest // palindrome starting from the beginning while (i >= 0 && !isPalindrome(s 0 i)) { i--; cnt++; } return cnt; } static void Main() { string s = 'aacecaaaa'; Console.WriteLine(minChar(s)); } }
JavaScript // function to check if the substring s[i...j] is a palindrome function isPalindrome(s i j) { while (i < j) { // if characters at the ends are not the same // it's not a palindrome if (s[i] !== s[j]) { return false; } i++; j--; } return true; } function minChar(s) { let cnt = 0; let i = s.length - 1; // iterate from the end of the string checking for the // longest palindrome starting from the beginning while (i >= 0 && !isPalindrome(s 0 i)) { i--; cnt++; } return cnt; } // Driver code let s = 'aacecaaaa'; console.log(minChar(s));
Wyjście
2
[Oczekiwane podejście 1] Korzystanie z tablicy lps algorytmu KMP - czas O(n) i przestrzeń O(n)
Kluczową obserwacją jest to, że najdłuższy palindromiczny przedrostek ciągu staje się najdłuższym palindromicznym przyrostkiem jego odwrotności.
Biorąc pod uwagę ciąg s = „aacecaaaa”, jego odwrotność revS = „aaaacecaa”. Najdłuższym palindromicznym przedrostkiem s jest „aacecaa”.
w celu
Aby to skutecznie znaleźć, używamy tablicy LPS z Algorytm KMP . Łączymy oryginalny ciąg znaków ze znakiem specjalnym i jego odwrotnością: s + '$' + revS.
Tablica LPS dla tego połączonego ciągu pomaga zidentyfikować najdłuższy przedrostek s pasujący do przyrostka revS, który reprezentuje również przedrostek palindromiczny s.
Ostatnia wartość tablicy LPS mówi nam, ile znaków już na początku tworzy palindrom. Zatem minimalna liczba znaków, które należy dodać, aby s było palindromem, wynosi s.length() - lps.back().
C++#include #include #include using namespace std; vector<int> computeLPSArray(string &pat) { int n = pat.length(); vector<int> lps(n); // lps[0] is always 0 lps[0] = 0; int len = 0; // loop calculates lps[i] for i = 1 to M-1 int i = 1; while (i < n) { // if the characters match increment len // and set lps[i] if (pat[i] == pat[len]) { len++; lps[i] = len; i++; } // if there is a mismatch else { // if len is not zero update len to // the last known prefix length if (len != 0) { len = lps[len - 1]; } // no prefix matches set lps[i] to 0 else { lps[i] = 0; i++; } } } return lps; } // returns minimum character to be added at // front to make string palindrome int minChar(string &s) { int n = s.length(); string rev = s; reverse(rev.begin() rev.end()); // get concatenation of string special character // and reverse string s = s + '$' + rev; // get LPS array of this concatenated string vector<int> lps = computeLPSArray(s); // by subtracting last entry of lps vector from // string length we will get our result return (n - lps.back()); } int main() { string s = 'aacecaaaa'; cout << minChar(s); return 0; }
Java import java.util.ArrayList; class GfG { static int[] computeLPSArray(String pat) { int n = pat.length(); int[] lps = new int[n]; // lps[0] is always 0 lps[0] = 0; int len = 0; // loop calculates lps[i] for i = 1 to n-1 int i = 1; while (i < n) { // if the characters match increment len // and set lps[i] if (pat.charAt(i) == pat.charAt(len)) { len++; lps[i] = len; i++; } // if there is a mismatch else { // if len is not zero update len to // the last known prefix length if (len != 0) { len = lps[len - 1]; } // no prefix matches set lps[i] to 0 else { lps[i] = 0; i++; } } } return lps; } // returns minimum character to be added at // front to make string palindrome static int minChar(String s) { int n = s.length(); String rev = new StringBuilder(s).reverse().toString(); // get concatenation of string special character // and reverse string s = s + '$' + rev; // get LPS array of this concatenated string int[] lps = computeLPSArray(s); // by subtracting last entry of lps array from // string length we will get our result return (n - lps[lps.length - 1]); } public static void main(String[] args) { String s = 'aacecaaaa'; System.out.println(minChar(s)); } }
Python def computeLPSArray(pat): n = len(pat) lps = [0] * n # lps[0] is always 0 len_lps = 0 # loop calculates lps[i] for i = 1 to n-1 i = 1 while i < n: # if the characters match increment len # and set lps[i] if pat[i] == pat[len_lps]: len_lps += 1 lps[i] = len_lps i += 1 # if there is a mismatch else: # if len is not zero update len to # the last known prefix length if len_lps != 0: len_lps = lps[len_lps - 1] # no prefix matches set lps[i] to 0 else: lps[i] = 0 i += 1 return lps # returns minimum character to be added at # front to make string palindrome def minChar(s): n = len(s) rev = s[::-1] # get concatenation of string special character # and reverse string s = s + '$' + rev # get LPS array of this concatenated string lps = computeLPSArray(s) # by subtracting last entry of lps array from # string length we will get our result return n - lps[-1] if __name__ == '__main__': s = 'aacecaaaa' print(minChar(s))
C# using System; class GfG { static int[] computeLPSArray(string pat) { int n = pat.Length; int[] lps = new int[n]; // lps[0] is always 0 lps[0] = 0; int len = 0; // loop calculates lps[i] for i = 1 to n-1 int i = 1; while (i < n) { // if the characters match increment len // and set lps[i] if (pat[i] == pat[len]) { len++; lps[i] = len; i++; } // if there is a mismatch else { // if len is not zero update len to // the last known prefix length if (len != 0) { len = lps[len - 1]; } // no prefix matches set lps[i] to 0 else { lps[i] = 0; i++; } } } return lps; } // minimum character to be added at // front to make string palindrome static int minChar(string s) { int n = s.Length; char[] charArray = s.ToCharArray(); Array.Reverse(charArray); string rev = new string(charArray); // get concatenation of string special character // and reverse string s = s + '$' + rev; // get LPS array of this concatenated string int[] lps = computeLPSArray(s); // by subtracting last entry of lps array from // string length we will get our result return n - lps[lps.Length - 1]; } static void Main() { string s = 'aacecaaaa'; Console.WriteLine(minChar(s)); } }
JavaScript function computeLPSArray(pat) { let n = pat.length; let lps = new Array(n).fill(0); // lps[0] is always 0 let len = 0; // loop calculates lps[i] for i = 1 to n-1 let i = 1; while (i < n) { // if the characters match increment len // and set lps[i] if (pat[i] === pat[len]) { len++; lps[i] = len; i++; } // if there is a mismatch else { // if len is not zero update len to // the last known prefix length if (len !== 0) { len = lps[len - 1]; } // no prefix matches set lps[i] to 0 else { lps[i] = 0; i++; } } } return lps; } // returns minimum character to be added at // front to make string palindrome function minChar(s) { let n = s.length; let rev = s.split('').reverse().join(''); // get concatenation of string special character // and reverse string s = s + '$' + rev; // get LPS array of this concatenated string let lps = computeLPSArray(s); // by subtracting last entry of lps array from // string length we will get our result return n - lps[lps.length - 1]; } // Driver Code let s = 'aacecaaaa'; console.log(minChar(s));
Wyjście
2
[Oczekiwane podejście 2] Korzystanie z algorytmu Manachera
C++Pomysł jest taki, aby użyć Algorytm Manachera aby skutecznie znaleźć wszystkie podciągi palindromiczne w czasie liniowym.
Przekształcamy ciąg, wstawiając znaki specjalne (#), aby równomiernie obsługiwać palindromy o długości parzystej i nieparzystej.
Po wstępnym przetworzeniu skanujemy od końca oryginalnego ciągu i używamy tablicy promienia palindromu, aby sprawdzić, czy przedrostek s[0...i] jest palindromem. Pierwszy taki indeks i daje nam najdłuższy przedrostek palindromiczny i zwracamy n - (i + 1) jako minimalną liczbę znaków do dodania.
#include #include #include using namespace std; // manacher's algorithm for finding longest // palindromic substrings class manacher { public: // array to store palindrome lengths centered // at each position vector<int> p; // modified string with separators and sentinels string ms; manacher(string &s) { ms = '@'; for (char c : s) { ms += '#' + string(1 c); } ms += '#$'; runManacher(); } // core Manacher's algorithm void runManacher() { int n = ms.size(); p.assign(n 0); int l = 0 r = 0; for (int i = 1; i < n - 1; ++i) { if (i < r) p[i] = min(r - i p[r + l - i]); // expand around the current center while (ms[i + 1 + p[i]] == ms[i - 1 - p[i]]) ++p[i]; // update center if palindrome goes beyond // current right boundary if (i + p[i] > r) { l = i - p[i]; r = i + p[i]; } } } // returns the length of the longest palindrome // centered at given position int getLongest(int cen int odd) { int pos = 2 * cen + 2 + !odd; return p[pos]; } // checks whether substring s[l...r] is a palindrome bool check(int l int r) { int len = r - l + 1; int longest = getLongest((l + r) / 2 len % 2); return len <= longest; } }; // returns the minimum number of characters to add at the // front to make the given string a palindrome int minChar(string &s) { int n = s.size(); manacher m(s); // scan from the end to find the longest // palindromic prefix for (int i = n - 1; i >= 0; --i) { if (m.check(0 i)) return n - (i + 1); } return n - 1; } int main() { string s = 'aacecaaaa'; cout << minChar(s) << endl; return 0; }
Java class GfG { // manacher's algorithm for finding longest // palindromic substrings static class manacher { // array to store palindrome lengths centered // at each position int[] p; // modified string with separators and sentinels String ms; manacher(String s) { StringBuilder sb = new StringBuilder('@'); for (char c : s.toCharArray()) { sb.append('#').append(c); } sb.append('#$'); ms = sb.toString(); runManacher(); } // core Manacher's algorithm void runManacher() { int n = ms.length(); p = new int[n]; int l = 0 r = 0; for (int i = 1; i < n - 1; ++i) { if (i < r) p[i] = Math.min(r - i p[r + l - i]); // expand around the current center while (ms.charAt(i + 1 + p[i]) == ms.charAt(i - 1 - p[i])) p[i]++; // update center if palindrome goes beyond // current right boundary if (i + p[i] > r) { l = i - p[i]; r = i + p[i]; } } } // returns the length of the longest palindrome // centered at given position int getLongest(int cen int odd) { int pos = 2 * cen + 2 + (odd == 0 ? 1 : 0); return p[pos]; } // checks whether substring s[l...r] is a palindrome boolean check(int l int r) { int len = r - l + 1; int longest = getLongest((l + r) / 2 len % 2); return len <= longest; } } // returns the minimum number of characters to add at the // front to make the given string a palindrome static int minChar(String s) { int n = s.length(); manacher m = new manacher(s); // scan from the end to find the longest // palindromic prefix for (int i = n - 1; i >= 0; --i) { if (m.check(0 i)) return n - (i + 1); } return n - 1; } public static void main(String[] args) { String s = 'aacecaaaa'; System.out.println(minChar(s)); } }
Python # manacher's algorithm for finding longest # palindromic substrings class manacher: # array to store palindrome lengths centered # at each position def __init__(self s): # modified string with separators and sentinels self.ms = '@' for c in s: self.ms += '#' + c self.ms += '#$' self.p = [] self.runManacher() # core Manacher's algorithm def runManacher(self): n = len(self.ms) self.p = [0] * n l = r = 0 for i in range(1 n - 1): if i < r: self.p[i] = min(r - i self.p[r + l - i]) # expand around the current center while self.ms[i + 1 + self.p[i]] == self.ms[i - 1 - self.p[i]]: self.p[i] += 1 # update center if palindrome goes beyond # current right boundary if i + self.p[i] > r: l = i - self.p[i] r = i + self.p[i] # returns the length of the longest palindrome # centered at given position def getLongest(self cen odd): pos = 2 * cen + 2 + (0 if odd else 1) return self.p[pos] # checks whether substring s[l...r] is a palindrome def check(self l r): length = r - l + 1 longest = self.getLongest((l + r) // 2 length % 2) return length <= longest # returns the minimum number of characters to add at the # front to make the given string a palindrome def minChar(s): n = len(s) m = manacher(s) # scan from the end to find the longest # palindromic prefix for i in range(n - 1 -1 -1): if m.check(0 i): return n - (i + 1) return n - 1 if __name__ == '__main__': s = 'aacecaaaa' print(minChar(s))
C# using System; class GfG { // manacher's algorithm for finding longest // palindromic substrings class manacher { // array to store palindrome lengths centered // at each position public int[] p; // modified string with separators and sentinels public string ms; public manacher(string s) { ms = '@'; foreach (char c in s) { ms += '#' + c; } ms += '#$'; runManacher(); } // core Manacher's algorithm void runManacher() { int n = ms.Length; p = new int[n]; int l = 0 r = 0; for (int i = 1; i < n - 1; ++i) { if (i < r) p[i] = Math.Min(r - i p[r + l - i]); // expand around the current center while (ms[i + 1 + p[i]] == ms[i - 1 - p[i]]) p[i]++; // update center if palindrome goes beyond // current right boundary if (i + p[i] > r) { l = i - p[i]; r = i + p[i]; } } } // returns the length of the longest palindrome // centered at given position public int getLongest(int cen int odd) { int pos = 2 * cen + 2 + (odd == 0 ? 1 : 0); return p[pos]; } // checks whether substring s[l...r] is a palindrome public bool check(int l int r) { int len = r - l + 1; int longest = getLongest((l + r) / 2 len % 2); return len <= longest; } } // returns the minimum number of characters to add at the // front to make the given string a palindrome static int minChar(string s) { int n = s.Length; manacher m = new manacher(s); // scan from the end to find the longest // palindromic prefix for (int i = n - 1; i >= 0; --i) { if (m.check(0 i)) return n - (i + 1); } return n - 1; } static void Main() { string s = 'aacecaaaa'; Console.WriteLine(minChar(s)); } }
JavaScript // manacher's algorithm for finding longest // palindromic substrings class manacher { // array to store palindrome lengths centered // at each position constructor(s) { // modified string with separators and sentinels this.ms = '@'; for (let c of s) { this.ms += '#' + c; } this.ms += '#$'; this.p = []; this.runManacher(); } // core Manacher's algorithm runManacher() { const n = this.ms.length; this.p = new Array(n).fill(0); let l = 0 r = 0; for (let i = 1; i < n - 1; ++i) { if (i < r) this.p[i] = Math.min(r - i this.p[r + l - i]); // expand around the current center while (this.ms[i + 1 + this.p[i]] === this.ms[i - 1 - this.p[i]]) this.p[i]++; // update center if palindrome goes beyond // current right boundary if (i + this.p[i] > r) { l = i - this.p[i]; r = i + this.p[i]; } } } // returns the length of the longest palindrome // centered at given position getLongest(cen odd) { const pos = 2 * cen + 2 + (odd === 0 ? 1 : 0); return this.p[pos]; } // checks whether substring s[l...r] is a palindrome check(l r) { const len = r - l + 1; const longest = this.getLongest(Math.floor((l + r) / 2) len % 2); return len <= longest; } } // returns the minimum number of characters to add at the // front to make the given string a palindrome function minChar(s) { const n = s.length; const m = new manacher(s); // scan from the end to find the longest // palindromic prefix for (let i = n - 1; i >= 0; --i) { if (m.check(0 i)) return n - (i + 1); } return n - 1; } // Driver Code const s = 'aacecaaaa'; console.log(minChar(s));
Wyjście
2
Złożoność czasowa: Algorytm O(n) Manachera działa w czasie liniowym poprzez rozszerzanie palindromów w każdym środku bez konieczności ponownego odwiedzania znaków, a pętla sprawdzania prefiksów wykonuje operacje O(1) na znak na n znakach.
Przestrzeń pomocnicza: O(n) użyte dla zmodyfikowanego ciągu i tablica długości palindromu p[], które rosną liniowo wraz z rozmiarem wejściowym.