logo

Metoda Pandas DataFrame.loc[].

Pandas DataFrame to dwuwymiarowa, potencjalnie heterogeniczna tabelaryczna struktura danych o zmiennym rozmiarze, z oznaczonymi osiami (wiersze i kolumny). Operacje arytmetyczne wyrównują się zarówno na etykietach wierszy, jak i kolumn. Można go traktować jako kontener przypominający dyktando dla obiektów Series. Jest to podstawowa struktura danych Pandy .

Pandy DataFrame loc[] Składnia

Pandy DataFrame.loc atrybut uzyskuje dostęp do grupy wierszy i kolumn według etykiet lub tablicy logicznej w danym Ramka danych Pandy .



Składnia: DataFrame.loc

Parametr: Nic

Zwroty : Skalar, seria, ramka danych



Właściwość lokalizacji Pandas DataFrame

Poniżej znajduje się kilka przykładów, dzięki którym możemy użyć Pandas DataFrame loc[]:

Przykład 1: Wybierz pojedynczy wiersz i kolumnę według etykiety za pomocą loc[]

Użyj atrybutu DataFrame.loc, aby uzyskać dostęp do określonej komórki w danym Ramka danych Pandy za pomocą etykiet indeksów i kolumn. Następnie wybieramy pojedynczy wiersz i kolumnę według etykiety za pomocą loc[].

Python3




Java równa się



# importing pandas as pd> import> pandas as pd> # Creating the DataFrame> df>=> pd.DataFrame({>'Weight'>: [>45>,>88>,>56>,>15>,>71>],> >'Name'>: [>'Sam'>,>'Andrea'>,>'Alex'>,>'Robin'>,>'Kia'>],> >'Age'>: [>14>,>25>,>55>,>8>,>21>]})> # Create the index> index_>=> [>'Row_1'>,>'Row_2'>,>'Row_3'>,>'Row_4'>,>'Row_5'>]> # Set the index> df.index>=> index_> # Print the DataFrame> print>(>'Original DataFrame:'>)> print>(df)> # Corrected selection using loc for a specific cell> result>=> df.loc[>'Row_2'>,>'Name'>]> # Print the result> print>(>' Selected Value at Row_2, Column 'Name':'>)> print>(result)>

gimp, jak odznaczyć
>

>

Wyjście

Original DataFrame:  Weight Name Age Row_1 45 Sam 14 Row_2 88 Andrea 25 Row_3 56 Alex 55 Row_4 15 Robin 8 Row_5 71 Kia 21 Selected Value at Row_2, Column 'Name': Andrea>

Przykład 2: Wybierz opcję Wiele wierszy i kolumn

Użyj atrybutu DataFrame.loc, aby zwrócić dwie kolumny w danej ramce danych, a następnie wybrać wiele wierszy i kolumn, jak pokazano w poniższym przykładzie.

Python3




# importing pandas as pd> import> pandas as pd> # Creating the DataFrame> df>=> pd.DataFrame({>'A'>:[>12>,>4>,>5>,>None>,>1>],> >'B'>:[>7>,>2>,>54>,>3>,>None>],> >'C'>:[>20>,>16>,>11>,>3>,>8>],> >'D'>:[>14>,>3>,>None>,>2>,>6>]})> # Create the index> index_>=> [>'Row_1'>,>'Row_2'>,>'Row_3'>,>'Row_4'>,>'Row_5'>]> # Set the index> df.index>=> index_> # Print the DataFrame> print>(>'Original DataFrame:'>)> print>(df)> # Corrected column names ('A' and 'D') in the result> result>=> df.loc[:, [>'A'>,>'D'>]]> # Print the result> print>(>' Selected Columns 'A' and 'D':'>)> print>(result)>

>

>

Wyjście

Original DataFrame:  A B C D Row_1 12.0 7 20 14.0 Row_2 4.0 2 16 3.0 Row_3 5.0 54 11 NaN Row_4 NaN 3 3 2.0 Row_5 1.0 NaN 8 6.0 Selected Columns 'A' and 'D':  A D Row_1 12.0 14.0 Row_2 4.0 3.0 Row_3 5.0 NaN Row_4 NaN 2.0 Row_5 1.0 6.0>

Przykład 3: Wybierz pomiędzy dwoma wierszami lub kolumnami

W tym przykładzie tworzymy ramkę danych pandy o nazwie „df”, ustawiamy niestandardowe indeksy wierszy, a następnie używamyloc>akcesor umożliwiający wybranie wierszy od „Row_2” do „Row_4” włącznie oraz kolumn od „B” do „D”. Wybrane wiersze i kolumny zostaną wydrukowane, demonstrując zastosowanie indeksowania opartego na etykietachloc>.

Python3




df lok
# importing pandas as pd> import> pandas as pd> # Creating the DataFrame> df>=> pd.DataFrame({>'A'>: [>12>,>4>,>5>,>None>,>1>],> >'B'>: [>7>,>2>,>54>,>3>,>None>],> >'C'>: [>20>,>16>,>11>,>3>,>8>],> >'D'>: [>14>,>3>,>None>,>2>,>6>]})> # Create the index> index_>=> [>'Row_1'>,>'Row_2'>,>'Row_3'>,>'Row_4'>,>'Row_5'>]> # Set the index> df.index>=> index_> # Print the original DataFrame> print>(>'Original DataFrame:'>)> print>(df)> # Select Rows Between 'Row_2' and 'Row_4'> selected_rows>=> df.loc[>'Row_2'>:>'Row_4'>]> print>(>' Selected Rows:'>)> print>(selected_rows)> # Select Columns 'B' through 'D'> selected_columns>=> df.loc[:,>'B'>:>'D'>]> print>(>' Selected Columns:'>)> print>(selected_columns)>

>

>

Wyjście

Original DataFrame:  A B C D Row_1 12.0 7 20 14.0 Row_2 4.0 2 16 3.0 Row_3 5.0 54 11 NaN Row_4 NaN 3 3 2.0 Row_5 1.0 NaN 8 6.0 Selected Rows:  A B C D Row_2 4 2 16 3.0 Row_3 5 54 11 NaN Row_4 NaN 3 3 2.0 Selected Columns:  B C D Row_1 7 20 14.0 Row_2 2 16 3.0 Row_3 54 11 NaN Row_4 3 3 2.0 Row_5 NaN 8 6.0>

Przykład 4: Wybierz alternatywne wiersze lub kolumny

W tym przykładzie tworzymy ramkę danych pandy o nazwie „df”, ustawiamy niestandardowe indeksy wierszy, a następnie używamyiloc>akcesor, aby wybrać alternatywne wiersze (co drugi wiersz) i alternatywne kolumny (co druga kolumna). Wynikowe selekcje są drukowane, co pokazuje użycie indeksowania opartego na liczbach całkowitychiloc>.

Python3




# importing pandas as pd> import> pandas as pd> # Creating the DataFrame> df>=> pd.DataFrame({>'A'>: [>12>,>4>,>5>,>None>,>1>],> >'B'>: [>7>,>2>,>54>,>3>,>None>],> >'C'>: [>20>,>16>,>11>,>3>,>8>],> >'D'>: [>14>,>3>,>None>,>2>,>6>]})> # Create the index> index_>=> [>'Row_1'>,>'Row_2'>,>'Row_3'>,>'Row_4'>,>'Row_5'>]> # Set the index> df.index>=> index_> # Print the original DataFrame> print>(>'Original DataFrame:'>)> print>(df)> # Select Alternate Rows> alternate_rows>=> df.iloc[::>2>]> print>(>' Alternate Rows:'>)> print>(alternate_rows)> # Select Alternate Columns> alternate_columns>=> df.iloc[:, ::>2>]> print>(>' Alternate Columns:'>)> print>(alternate_columns)>

indeks javy
>

>

katalog w poleceniach systemu Linux

Wyjście

Original DataFrame:  A B C D Row_1 12.0 7 20 14.0 Row_2 4.0 2 16 3.0 Row_3 5.0 54 11 NaN Row_4 NaN 3 3 2.0 Row_5 1.0 NaN 8 6.0 Alternate Rows:  A B C D Row_1 12.0 7 20 14.0 Row_3 5.0 54 11 NaN Row_5 1.0 NaN 8 6.0 Alternate Columns:  A C Row_1 12.0 20 Row_2 4.0 16 Row_3 5.0 11 Row_4 NaN 3 Row_5 1.0 8>

Przykład 5: Używanie warunków z lokalizacją Pand

W tym przykładzie tworzymy ramkę danych pandy o nazwie „df”, ustawiamy niestandardowe indeksy wierszy i wykorzystujemyloc>akcesor umożliwiający wybieranie wierszy na podstawie warunków. Pokazuje wybieranie wierszy, w których kolumna „A” ma wartości większe niż 5 i wybieranie wierszy, w których kolumna „B” nie ma wartości null. Wynikowe selekcje są następnie drukowane, co pokazuje zastosowanie filtrowania warunkowegoloc>.

Python3




# importing pandas as pd> import> pandas as pd> # Creating the DataFrame> df>=> pd.DataFrame({>'A'>: [>12>,>4>,>5>,>None>,>1>],> >'B'>: [>7>,>2>,>54>,>3>,>None>],> >'C'>: [>20>,>16>,>11>,>3>,>8>],> >'D'>: [>14>,>3>,>None>,>2>,>6>]})> # Create the index> index_>=> [>'Row_1'>,>'Row_2'>,>'Row_3'>,>'Row_4'>,>'Row_5'>]> # Set the index> df.index>=> index_> # Print the original DataFrame> print>(>'Original DataFrame:'>)> print>(df)> # Using Conditions with loc> # Example: Select rows where column 'A' is greater than 5> selected_rows>=> df.loc[df[>'A'>]>>5>]> print>(>' Rows where column 'A' is greater than 5:'>)> print>(selected_rows)> # Example: Select rows where column 'B' is not null> non_null_rows>=> df.loc[df[>'B'>].notnull()]> print>(>' Rows where column 'B' is not null:'>)> print>(non_null_rows)>

>

>

Wyjście

Original DataFrame:  A B C D Row_1 12.0 7 20 14.0 Row_2 4.0 2 16 3.0 Row_3 5.0 54 11 NaN Row_4 NaN 3 3 2.0 Row_5 1.0 NaN 8 6.0 Rows where column 'A' is greater than 5:  A B C D Row_1 12.0 7 20 14.0 Row_3 5.0 54 11 NaN Rows where column 'B' is not null:  A B C D Row_1 12.0 7 20 14.0 Row_2 4.0 2 16 3.0 Row_3 5.0 54 11 NaN Row_4 NaN 3 3 2.0>