Jest to algorytm typu Dziel i Rządź.
Dzielić: Zmień układ elementów i podziel tablice na dwie podtablice i element pomiędzy nimi. Wyszukaj, czy każdy element w lewej podtablicy jest mniejszy lub równy średniemu elementowi, a każdy element w prawej podtablicy jest większy niż środkowy element.
Podbić: Rekurencyjnie posortuj dwie podtablice.
Łączyć: Połącz już posortowaną tablicę.
Algorytm:
QUICKSORT (array A, int m, int n) 1 if (n > m) 2 then 3 i ← a random index from [m,n] 4 swap A [i] with A[m] 5 o ← PARTITION (A, m, n) 6 QUICKSORT (A, m, o - 1) 7 QUICKSORT (A, o + 1, n)
Algorytm partycji:
Algorytm partycjonowania zmienia kolejność podtablic w jednym miejscu.
PARTITION (array A, int m, int n) 1 x ← A[m] 2 o ← m 3 for p ← m + 1 to n 4 do if (A[p] <x) 1 5 6 7 8 then o ← + swap a[o] with a[p] a[m] return < pre> <p> <strong>Figure: shows the execution trace partition algorithm</strong> </p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort.webp" alt="DAA Quick sort"> <h3>Example of Quick Sort: </h3> <pre> 44 33 11 55 77 90 40 60 99 22 88 </pre> <p>Let <strong>44</strong> be the <strong>Pivot</strong> element and scanning done from right to left</p> <p>Comparing <strong>44</strong> to the right-side elements, and if right-side elements are <strong>smaller</strong> than <strong>44</strong> , then swap it. As <strong>22</strong> is smaller than <strong>44</strong> so swap them.</p> <pre> <strong>22</strong> 33 11 55 77 90 40 60 99 <strong>44</strong> 88 </pre> <p>Now comparing <strong>44</strong> to the left side element and the element must be <strong>greater</strong> than 44 then swap them. As <strong>55</strong> are greater than <strong>44</strong> so swap them.</p> <pre> 22 33 11 <strong>44</strong> 77 90 40 60 99 <strong>55</strong> 88 </pre> <p>Recursively, repeating steps 1 & steps 2 until we get two lists one left from pivot element <strong>44</strong> & one right from pivot element.</p> <pre> 22 33 11 <strong>40</strong> 77 90 <strong>44</strong> 60 99 55 88 </pre> <p> <strong>Swap with 77:</strong> </p> <pre> 22 33 11 40 <strong>44</strong> 90 <strong>77</strong> 60 99 55 88 </pre> <p>Now, the element on the right side and left side are greater than and smaller than <strong>44</strong> respectively.</p> <p> <strong>Now we get two sorted lists:</strong> </p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-2.webp" alt="DAA Quick sort"> <p>And these sublists are sorted under the same process as above done.</p> <p>These two sorted sublists side by side.</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-3.webp" alt="DAA Quick sort"> <br> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-4.webp" alt="DAA Quick sort"> <h3>Merging Sublists:</h3> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-5.webp" alt="DAA Quick sort"> <p> <strong> SORTED LISTS</strong> </p> <p> <strong>Worst Case Analysis:</strong> It is the case when items are already in sorted form and we try to sort them again. This will takes lots of time and space.</p> <h3>Equation:</h3> <pre> T (n) =T(1)+T(n-1)+n </pre> <p> <strong>T (1)</strong> is time taken by pivot element.</p> <p> <strong>T (n-1)</strong> is time taken by remaining element except for pivot element.</p> <p> <strong>N:</strong> the number of comparisons required to identify the exact position of itself (every element)</p> <p>If we compare first element pivot with other, then there will be 5 comparisons.</p> <p>It means there will be n comparisons if there are n items.</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-6.webp" alt="DAA Quick sort"> <h3>Relational Formula for Worst Case:</h3> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-7.webp" alt="DAA Quick sort"> <h3>Note: for making T (n-4) as T (1) we will put (n-1) in place of '4' and if <br> We put (n-1) in place of 4 then we have to put (n-2) in place of 3 and (n-3) <br> In place of 2 and so on. <p>T(n)=(n-1) T(1) + T(n-(n-1))+(n-(n-2))+(n-(n-3))+(n-(n-4))+n <br> T (n) = (n-1) T (1) + T (1) + 2 + 3 + 4+............n <br> T (n) = (n-1) T (1) +T (1) +2+3+4+...........+n+1-1</p> <p>[Adding 1 and subtracting 1 for making AP series]</p> <p>T (n) = (n-1) T (1) +T (1) +1+2+3+4+........ + n-1 <br> T (n) = (n-1) T (1) +T (1) + <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-8.webp" alt="DAA Quick sort">-1</p> <p> <strong>Stopping Condition: T (1) =0</strong> </p> <p>Because at last there is only one element left and no comparison is required.</p> <p>T (n) = (n-1) (0) +0+<img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-8.webp" alt="DAA Quick sort">-1</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-9.webp" alt="DAA Quick sort"> <p> <strong>Worst Case Complexity of Quick Sort is T (n) =O (n<sup>2</sup>)</strong> </p> <h3>Randomized Quick Sort [Average Case]:</h3> <p>Generally, we assume the first element of the list as the pivot element. In an average Case, the number of chances to get a pivot element is equal to the number of items.</p> <pre> Let total time taken =T (n) For eg: In a given list p 1, p 2, p 3, p 4............pn If p 1 is the pivot list then we have 2 lists. I.e. T (0) and T (n-1) If p2 is the pivot list then we have 2 lists. I.e. T (1) and T (n-2) p 1, p 2, p 3, p 4............pn If p3 is the pivot list then we have 2 lists. I.e. T (2) and T (n-3) p 1, p 2, p 3, p 4............p n </pre> <p>So in general if we take the <strong>Kth</strong> element to be the pivot element.</p> <p> <strong>Then,</strong> </p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-10.webp" alt="DAA Quick sort"> <p>Pivot element will do n comparison and we are doing average case so,</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-11.webp" alt="DAA Quick sort"> <p> <strong>So Relational Formula for Randomized Quick Sort is:</strong> </p> <pre> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-12.webp" alt="DAA Quick sort"> = n+1 +<img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-13.webp" alt="DAA Quick sort">(T(0)+T(1)+T(2)+...T(n-1)+T(n-2)+T(n-3)+...T(0)) <br> = n+1 +<img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-13.webp" alt="DAA Quick sort">x2 (T(0)+T(1)+T(2)+...T(n-2)+T(n-1)) </pre> <pre> n T (n) = n (n+1) +2 (T(0)+T(1)+T(2)+...T(n-1)........eq 1 </pre> <p>Put n=n-1 in eq 1</p> <pre> (n -1) T (n-1) = (n-1) n+2 (T(0)+T(1)+T(2)+...T(n-2)......eq2 </pre> <p>From eq1 and eq 2</p> <p>n T (n) - (n-1) T (n-1)= n(n+1)-n(n-1)+2 (T(0)+T(1)+T(2)+?T(n-2)+T(n-1))-2(T(0)+T(1)+T(2)+...T(n-2)) <br> n T(n)- (n-1) T(n-1)= n[n+1-n+1]+2T(n-1) <br> n T(n)=[2+(n-1)]T(n-1)+2n <br> n T(n)= n+1 T(n-1)+2n</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-14.webp" alt="DAA Quick sort"> <p>Put n=n-1 in eq 3</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-15.webp" alt="DAA Quick sort"> <p>Put 4 eq in 3 eq</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-16.webp" alt="DAA Quick sort"> <p>Put n=n-2 in eq 3</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-17.webp" alt="DAA Quick sort"> <p>Put 6 eq in 5 eq</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-18.webp" alt="DAA Quick sort"> <p>Put n=n-3 in eq 3</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-19.webp" alt="DAA Quick sort"> <p>Put 8 eq in 7 eq</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-20.webp" alt="DAA Quick sort"> <br> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-21.webp" alt="DAA Quick sort"> <p>From 3eq, 5eq, 7eq, 9 eq we get</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-22.webp" alt="DAA Quick sort"> <br> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-23.webp" alt="DAA Quick sort"> <p>From 10 eq</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-24.webp" alt="DAA Quick sort"> <p>Multiply and divide the last term by 2</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-25.webp" alt="DAA Quick sort"> <p> <strong>Is the average case complexity of quick sort for sorting n elements.</strong> </p> <p> <strong>3. Quick Sort [Best Case]:</strong> In any sorting, best case is the only case in which we don't make any comparison between elements that is only done when we have only one element to sort.</p> <img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-26.webp" alt="DAA Quick sort"> <hr></h3></x)>
Pozwalać 44 być Sworzeń elementu i skanowanie odbywa się od prawej do lewej
Porównywanie 44 do elementów po prawej stronie i jeśli elementy po prawej stronie są mniejszy niż 44 , a następnie zamień go. Jak 22 jest mniejszy od 44 więc zamień je.
<strong>22</strong> 33 11 55 77 90 40 60 99 <strong>44</strong> 88
Teraz porównanie 44 do elementu po lewej stronie i element musi być większy niż 44, a następnie zamień je. Jak 55 są większe niż 44 więc zamień je.
22 33 11 <strong>44</strong> 77 90 40 60 99 <strong>55</strong> 88
Rekurencyjnie, powtarzając kroki 1 i kroki 2, aż otrzymamy dwie listy, jedną pozostałą po elemencie obrotowym 44 & jeden na prawo od elementu obrotowego.
22 33 11 <strong>40</strong> 77 90 <strong>44</strong> 60 99 55 88
Zamień z 77:
22 33 11 40 <strong>44</strong> 90 <strong>77</strong> 60 99 55 88
Teraz elementy po prawej i lewej stronie są większe i mniejsze niż 44 odpowiednio.
Otrzymujemy teraz dwie posortowane listy:
Te podlisty są sortowane w ramach tego samego procesu, co powyżej.
Te dwie posortowane listy podrzędne obok siebie.
Łączenie podlist:
POsortowane listy
Analiza najgorszego przypadku: Dzieje się tak w przypadku, gdy elementy są już w formie posortowanej i próbujemy je posortować jeszcze raz. Zajmie to dużo czasu i miejsca.
Równanie:
T (n) =T(1)+T(n-1)+n
T. (1) to czas potrzebny elementowi obrotowemu.
T (n-1) to czas, jaki zajmuje pozostały element z wyjątkiem elementu obrotowego.
N: liczba porównań wymagana do określenia dokładnej pozycji samego siebie (każdego elementu)
Jeżeli porównamy przegub pierwszego elementu z pozostałymi, wówczas będzie 5 porównań.
Oznacza to, że jeśli będzie n elementów, nastąpi n porównań.
Wzór relacyjny dla najgorszego przypadku:
Uwaga: aby utworzyć T (n-4) jako T (1), wstawimy (n-1) w miejsce „4” i jeśli
Wstawiamy (n-1) w miejsce 4, następnie musimy wstawić (n-2) w miejsce 3 i (n-3)
Zamiast 2 i tak dalej.
T(n)=(n-1) T(1) + T(n-(n-1))+(n-(n-2))+(n-(n-3))+(n-( n-4))+n
T (n) = (n-1) T (1) + T (1) + 2 + 3 + 4+...........n
T (n) = (n-1) T (1) +T (1) +2+3+4+.............+n+1-1
[Dodawanie i odejmowanie 1 w celu utworzenia serii AP]
T (n) = (n-1) T (1) +T (1) +1+2+3+4+...... + n-1
T (n) = (n-1) T (1) + T (1) + -1
Warunek zatrzymania: T (1) = 0
Bo w końcu został już tylko jeden element i nie trzeba porównywać.
T (n) = (n-1) (0) +0+ -1
Najgorsza złożoność przypadku szybkiego sortowania to T (n) = O (n2)
Losowe szybkie sortowanie [średni przypadek]:
Generalnie przyjmujemy, że pierwszy element listy jest elementem przestawnym. W przeciętnym przypadku liczba szans na uzyskanie elementu obrotowego jest równa liczbie elementów.
Let total time taken =T (n) For eg: In a given list p 1, p 2, p 3, p 4............pn If p 1 is the pivot list then we have 2 lists. I.e. T (0) and T (n-1) If p2 is the pivot list then we have 2 lists. I.e. T (1) and T (n-2) p 1, p 2, p 3, p 4............pn If p3 is the pivot list then we have 2 lists. I.e. T (2) and T (n-3) p 1, p 2, p 3, p 4............p n
Ogólnie rzecz biorąc, jeśli weźmiemy Kth element, który ma być elementem obrotowym.
Następnie,
Element obrotowy wykona n porównań, a my robimy przeciętny przypadek, więc,
Zatem wzór relacyjny dla losowego szybkiego sortowania to:
<img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-12.webp" alt="DAA Quick sort"> = n+1 +<img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-13.webp" alt="DAA Quick sort">(T(0)+T(1)+T(2)+...T(n-1)+T(n-2)+T(n-3)+...T(0)) <br> = n+1 +<img src="//techcodeview.com/img/daa-tutorial/50/quick-sort-13.webp" alt="DAA Quick sort">x2 (T(0)+T(1)+T(2)+...T(n-2)+T(n-1))
n T (n) = n (n+1) +2 (T(0)+T(1)+T(2)+...T(n-1)........eq 1
Wstaw n=n-1 do równania 1
(n -1) T (n-1) = (n-1) n+2 (T(0)+T(1)+T(2)+...T(n-2)......eq2
Z równania 1 i równania 2
n T (n) - (n-1) T (n-1)= n(n+1)-n(n-1)+2 (T(0)+T(1)+T(2)+? T(n-2)+T(n-1))-2(T(0)+T(1)+T(2)+...T(n-2))
n T(n)- (n-1) T(n-1)= n[n+1-n+1]+2T(n-1)
n T(n)=[2+(n-1)]T(n-1)+2n
n T(n)= n+1 T(n-1)+2n
ustawienie ścieżki Pythona
Wstaw n=n-1 do równania 3
Umieść 4 równoważniki w 3 równoważnikach
Wstaw n=n-2 do równania 3
Włóż 6 równ. do 5 równ
Wstaw n=n-3 do równania 3
Włóż 8 równ. do 7 równ
Z 3eq, 5eq, 7eq, 9 eq otrzymujemy
Od 10 równ
Pomnóż i podziel ostatni wyraz przez 2
Jest średnią złożonością przypadku szybkiego sortowania przy sortowaniu n elementów.
3. Szybkie sortowanie [najlepszy przypadek]: W przypadku każdego sortowania najlepszym przypadkiem jest jedyny przypadek, w którym nie dokonujemy żadnego porównania między elementami, co jest wykonywane tylko wtedy, gdy mamy tylko jeden element do posortowania.