logo

Najmniejsza liczba o podanej liczbie cyfr i sumie

Wypróbuj w praktyce GfG ' title=

Biorąc pod uwagę dwie liczby całkowite S I D znajdź najmniejszy możliwa liczba, która ma dokładnie cyfry d i a suma cyfr równy S .
Zwróć liczbę jako a smyczkowy . Jeśli taki numer nie istnieje, zwróć „-1” .

Przykłady:



Wejście: s = 9 d = 2
Wyjście: 18
Wyjaśnienie: 18 to najmniejsza możliwa liczba, której suma cyfr = 9, a całkowita liczba cyfr = 2.

Wejście: s = 20 d = 3
Wyjście: 299
Wyjaśnienie: 299 to najmniejsza możliwa liczba, której suma cyfr = 20 i całkowita liczba cyfr = 3.

Wejście: s = 1 d = 1
Wyjście: 1
Wyjaśnienie: 1 to najmniejsza możliwa liczba, której suma cyfr = 1 i całkowita liczba cyfr = 1.



Spis treści

[Podejście brutalnej siły] Iteruj sekwencyjnie - czas O(d*(10^d)) i przestrzeń O(1)

Ponieważ liczby są sekwencyjne, podejście brutalnej siły iteruje od najmniejszy d-cyfrowy numer do największy sprawdzając każdy. Dla każdej liczby obliczamy suma jego cyfr i zwróć pierwsze prawidłowe dopasowanie, upewniając się, że wybrano najmniejszą możliwą liczbę. Jeśli nie ma ważnego numeru, zwracamy „-1” .

C++
// C++ program to find the smallest d-digit // number with the given sum using  // a brute force approach #include    using namespace std; string smallestNumber(int s int d) {    // The smallest d-digit number is 10^(d-1)  int start = pow(10 d - 1);    // The largest d-digit number is 10^d - 1  int end = pow(10 d) - 1;  // Iterate through all d-digit numbers  for (int num = start; num <= end; num++) {    int sum = 0 x = num;  // Calculate sum of digits  while (x > 0) {  sum += x % 10;  x /= 10;  }  // If sum matches return the number  // as a string  if (sum == s) {  return to_string(num);  }  }  // If no valid number is found return '-1'  return '-1'; } // Driver Code int main() {    int s = 9 d = 2;    cout << smallestNumber(s d) << endl;  return 0; } 
Java
// Java program to find the smallest d-digit // number with the given sum using  // a brute force approach import java.util.*; class GfG {    static String smallestNumber(int s int d) {    // The smallest d-digit number is 10^(d-1)  int start = (int) Math.pow(10 d - 1);    // The largest d-digit number is 10^d - 1  int end = (int) Math.pow(10 d) - 1;  // Iterate through all d-digit numbers  for (int num = start; num <= end; num++) {    int sum = 0 x = num;  // Calculate sum of digits  while (x > 0) {  sum += x % 10;  x /= 10;  }  // If sum matches return the number  // as a string  if (sum == s) {  return Integer.toString(num);  }  }  // If no valid number is found return '-1'  return '-1';  }  // Driver Code  public static void main(String[] args) {    int s = 9 d = 2;    System.out.println(smallestNumber(s d));  } } 
Python
# Python program to find the smallest d-digit # number with the given sum using  # a brute force approach def smallestNumber(s d): # The smallest d-digit number is 10^(d-1) start = 10**(d - 1) # The largest d-digit number is 10^d - 1 end = 10**d - 1 # Iterate through all d-digit numbers for num in range(start end + 1): sum_digits = 0 x = num # Calculate sum of digits while x > 0: sum_digits += x % 10 x //= 10 # If sum matches return the number # as a string if sum_digits == s: return str(num) # If no valid number is found return '-1' return '-1' # Driver Code if __name__ == '__main__': s d = 9 2 print(smallestNumber(s d)) 
C#
// C# program to find the smallest d-digit // number with the given sum using  // a brute force approach using System; class GfG {    static string smallestNumber(int s int d) {    // The smallest d-digit number is 10^(d-1)  int start = (int)Math.Pow(10 d - 1);    // The largest d-digit number is 10^d - 1  int end = (int)Math.Pow(10 d) - 1;  // Iterate through all d-digit numbers  for (int num = start; num <= end; num++) {    int sum = 0 x = num;  // Calculate sum of digits  while (x > 0) {  sum += x % 10;  x /= 10;  }  // If sum matches return the number  // as a string  if (sum == s) {  return num.ToString();  }  }  // If no valid number is found return '-1'  return '-1';  }  // Driver Code  public static void Main() {    int s = 9 d = 2;    Console.WriteLine(smallestNumber(s d));  } } 
JavaScript
// JavaScript program to find the smallest d-digit // number with the given sum using  // a brute force approach function smallestNumber(s d) {    // The smallest d-digit number is 10^(d-1)  let start = Math.pow(10 d - 1);    // The largest d-digit number is 10^d - 1  let end = Math.pow(10 d) - 1;  // Iterate through all d-digit numbers  for (let num = start; num <= end; num++) {    let sum = 0 x = num;  // Calculate sum of digits  while (x > 0) {  sum += x % 10;  x = Math.floor(x / 10);  }  // If sum matches return the number  // as a string  if (sum === s) {  return num.toString();  }  }  // If no valid number is found return '-1'  return '-1'; } // Driver Code let s = 9 d = 2; console.log(smallestNumber(s d)); 

Wyjście
18 

[Oczekiwane podejście] Używanie zachłannej techniki - O(d) czasu i O(1) przestrzeni

Podejście zapewnia cyfrę skrajną lewą jest niezerowy więc my rezerwa 1 za to i rozdaj pozostałą sumę z od prawej do lewej aby utworzyć najmniejszą możliwą liczbę. The chciwe podejście pomaga w umieszczeniu największych możliwych wartości (do 9) w skrajnie prawe pozycje aby liczba była mała.



Kroki wdrożenia powyższego pomysłu:

  • Sprawdź ograniczenia, aby upewnić się, że a ważna suma s można utworzyć za pomocą cyfry d w przeciwnym razie wróć „-1” .
  • Zainicjuj wynik jako ciąg d „0” I rezerwa 1 dla cyfra znajdująca się najbardziej na lewo poprzez redukcję o 1 .
  • Przejście z od prawej do lewej i umieść największa możliwa cyfra (<= 9) podczas aktualizacji S odpowiednio.
  • Jeśli S<= 9 umieść jego wartość w bieżącej pozycji i ustaw s = 0 aby zatrzymać dalsze aktualizacje.
  • Przypisz cyfra znajdująca się najbardziej na lewo dodając pozostałe s aby mieć pewność, że pozostanie niezerowy .
  • Konwertuj wynik ciąg do wymaganego formatu i powrót to jako wynik końcowy.
C++
// C++ program to find the smallest d-digit  // number with the given sum using // Greedy Technique #include    using namespace std; string smallestNumber(int s int d) {    // If sum is too small or too large   // for d digits  if (s < 1 || s > 9 * d) {  return '-1';  }  string result(d '0');     // Reserve 1 for the leftmost digit  s--;   // Fill digits from right to left  for (int i = d - 1; i > 0; i--) {    // Place the largest possible value <= 9  if (s > 9) {  result[i] = '9';  s -= 9;  } else {  result[i] = '0' + s;  s = 0;  }  }  // Place the leftmost digit ensuring  // it's non-zero  result[0] = '1' + s;    return result; } // Driver Code int main() {    int s = 9 d = 2;    cout << smallestNumber(s d) << endl;  return 0; } 
Java
// Java program to find the smallest d-digit  // number with the given sum using // Greedy Technique import java.util.*; class GfG {    static String smallestNumber(int s int d) {    // If sum is too small or too large   // for d digits  if (s < 1 || s > 9 * d) {  return '-1';  }  char[] result = new char[d];  Arrays.fill(result '0');    // Reserve 1 for the leftmost digit  s--;  // Fill digits from right to left  for (int i = d - 1; i > 0; i--) {    // Place the largest possible value <= 9  if (s > 9) {  result[i] = '9';  s -= 9;  } else {  result[i] = (char) ('0' + s);  s = 0;  }  }  // Place the leftmost digit ensuring  // it's non-zero  result[0] = (char) ('1' + s);    return new String(result);  }  // Driver Code  public static void main(String[] args) {    int s = 9 d = 2;    System.out.println(smallestNumber(s d));  } } 
Python
# Python program to find the smallest d-digit  # number with the given sum using # Greedy Technique def smallestNumber(s d): # If sum is too small or too large  # for d digits if s < 1 or s > 9 * d: return '-1' result = ['0'] * d # Reserve 1 for the leftmost digit s -= 1 # Fill digits from right to left for i in range(d - 1 0 -1): # Place the largest possible value <= 9 if s > 9: result[i] = '9' s -= 9 else: result[i] = str(s) s = 0 # Place the leftmost digit ensuring # it's non-zero result[0] = str(1 + s) return ''.join(result) # Driver Code if __name__ == '__main__': s d = 9 2 print(smallestNumber(s d)) 
C#
// C# program to find the smallest d-digit  // number with the given sum using // Greedy Technique using System; class GfG {  static string smallestNumber(int s int d) {    // If sum is too small or too large   // for d digits  if (s < 1 || s > 9 * d) {  return '-1';  }  char[] result = new char[d];  Array.Fill(result '0');  // Reserve 1 for the leftmost digit  s--;  // Fill digits from right to left  for (int i = d - 1; i > 0; i--) {    // Place the largest possible value <= 9  if (s > 9) {  result[i] = '9';  s -= 9;  } else {  result[i] = (char) ('0' + s);  s = 0;  }  }  // Place the leftmost digit ensuring  // it's non-zero  result[0] = (char) ('1' + s);    return new string(result);  }  // Driver Code  static void Main() {    int s = 9 d = 2;    Console.WriteLine(smallestNumber(s d));  } } 
JavaScript
// JavaScript program to find the smallest d-digit  // number with the given sum using // Greedy Technique function smallestNumber(s d) {    // If sum is too small or too large   // for d digits  if (s < 1 || s > 9 * d) {  return '-1';  }  let result = Array(d).fill('0');   // Reserve 1 for the leftmost digit  s--;  // Fill digits from right to left  for (let i = d - 1; i > 0; i--) {    // Place the largest possible value <= 9  if (s > 9) {  result[i] = '9';  s -= 9;  } else {  result[i] = String(s);  s = 0;  }  }  // Place the leftmost digit ensuring  // it's non-zero  result[0] = String(1 + s);    return result.join(''); } // Driver Code let s = 9 d = 2; console.log(smallestNumber(s d)); 

Wyjście
18