#practiceLinkDiv { display: none !important; }Dana liczba naturalna N zadaniem jest znalezienie sumy dzielników wszystkich dzielników n.
Przykłady:
alfabet z cyframi
Input : n = 54 Output : 232 Divisors of 54 = 1 2 3 6 9 18 27 54. Sum of divisors of 1 2 3 6 9 18 27 54 are 1 3 4 12 13 39 40 120 respectively. Sum of divisors of all the divisors of 54 = 1 + 3 + 4 + 12 + 13 + 39 + 40 + 120 = 232. Input : n = 10 Output : 28 Divisors of 10 are 1 2 5 10 Sums of divisors of divisors are 1 3 6 18. Overall sum = 1 + 3 + 6 + 18 = 28Recommended Practice Znajdź sumę dzielników Spróbuj!
Korzystając z faktu, że dowolna liczba N można wyrazić jako iloczyn czynników pierwszych N = str1k1x s2k2x ... gdzie str1P2...są liczbami pierwszymi.
Wszystkie dzielniki n można wyrazić jako p1Ax s2Bx ... gdzie 0<= a <= k1 and 0 <= b <= k2.
Teraz suma dzielników będzie sumą wszystkich potęg p1- P1P11.... P1k1pomnożone przez całą potęgę p2- P2P21.... P2k1
Suma dzielnika n
= (str1x s2) + (str11x s2) +.....+ (str1k1x s2) +....+ (str1x s21) + (str11x s21) +.....+ (str1k1x s21) +......+
(P1x s2k2) + (str11x s2k2) +......+ (str1k1x s2k2).
= (str1+ str11+...+ str1k1) x str2+ (str1+ str11+...+ str1k1) x str21+.......+ (str1+ str11+...+ str1k1) x str2k2.
= (str1+ str11+...+ str1k1) x (str2+ str21+...+ str2k2).
Teraz dzielniki dowolnego pAdla p jako liczby pierwszej są pP1...... PA. A suma dzielników będzie (str(za+1)- 1)/(p -1) niech definiuje to przez f(p).
Zatem suma dzielników wszystkich dzielników będzie
= (f(s1) + f(str11) +...+ f(str1k1)) x (f(str2) + f(str21) +...+ f(str2k2)).
Zatem mając liczbę n poprzez rozkład na czynniki pierwsze, możemy znaleźć sumę dzielników wszystkich dzielników. Ale w tym zadaniu wiemy, że n jest iloczynem elementu tablicy. Zatem znajdź rozkład na czynniki pierwsze każdego elementu i korzystając z faktu aBx aC= zab+c.
Poniżej implementacja tego podejścia:
C++// C++ program to find sum of divisors of all // the divisors of a natural number. #include using namespace std; // Returns sum of divisors of all the divisors // of n int sumDivisorsOfDivisors(int n) { // Calculating powers of prime factors and // storing them in a map mp[]. map<int int> mp; for (int j=2; j<=sqrt(n); j++) { int count = 0; while (n%j == 0) { n /= j; count++; } if (count) mp[j] = count; } // If n is a prime number if (n != 1) mp[n] = 1; // For each prime factor calculating (p^(a+1)-1)/(p-1) // and adding it to answer. int ans = 1; for (auto it : mp) { int pw = 1; int sum = 0; for (int i=it.second+1; i>=1; i--) { sum += (i*pw); pw *= it.first; } ans *= sum; } return ans; } // Driven Program int main() { int n = 10; cout << sumDivisorsOfDivisors(n); return 0; }
Java // Java program to find sum of divisors of all // the divisors of a natural number. import java.util.HashMap; class GFG { // Returns sum of divisors of all the divisors // of n public static int sumDivisorsOfDivisors(int n) { // Calculating powers of prime factors and // storing them in a map mp[]. HashMap<Integer Integer> mp = new HashMap<>(); for (int j = 2; j <= Math.sqrt(n); j++) { int count = 0; while (n % j == 0) { n /= j; count++; } if (count != 0) mp.put(j count); } // If n is a prime number if (n != 1) mp.put(n 1); // For each prime factor calculating (p^(a+1)-1)/(p-1) // and adding it to answer. int ans = 1; for (HashMap.Entry<Integer Integer> entry : mp.entrySet()) { int pw = 1; int sum = 0; for (int i = entry.getValue() + 1; i >= 1; i--) { sum += (i * pw); pw *= entry.getKey(); } ans *= sum; } return ans; } // Driver code public static void main(String[] args) { int n = 10; System.out.println(sumDivisorsOfDivisors(n)); } } // This code is contributed by // sanjeev2552
Python3 # Python3 program to find sum of divisors # of all the divisors of a natural number. import math as mt # Returns sum of divisors of all # the divisors of n def sumDivisorsOfDivisors(n): # Calculating powers of prime factors # and storing them in a map mp[]. mp = dict() for j in range(2 mt.ceil(mt.sqrt(n))): count = 0 while (n % j == 0): n //= j count += 1 if (count): mp[j] = count # If n is a prime number if (n != 1): mp[n] = 1 # For each prime factor calculating # (p^(a+1)-1)/(p-1) and adding it to answer. ans = 1 for it in mp: pw = 1 summ = 0 for i in range(mp[it] + 1 0 -1): summ += (i * pw) pw *= it ans *= summ return ans # Driver Code n = 10 print(sumDivisorsOfDivisors(n)) # This code is contributed # by mohit kumar 29
C# // C# program to find sum of divisors of all // the divisors of a natural number. using System; using System.Collections.Generic; class GFG { // Returns sum of divisors of // all the divisors of n public static int sumDivisorsOfDivisors(int n) { // Calculating powers of prime factors and // storing them in a map mp[]. Dictionary<int int> mp = new Dictionary<int int>(); for (int j = 2; j <= Math.Sqrt(n); j++) { int count = 0; while (n % j == 0) { n /= j; count++; } if (count != 0) mp.Add(j count); } // If n is a prime number if (n != 1) mp.Add(n 1); // For each prime factor // calculating (p^(a+1)-1)/(p-1) // and adding it to answer. int ans = 1; foreach(KeyValuePair<int int> entry in mp) { int pw = 1; int sum = 0; for (int i = entry.Value + 1; i >= 1; i--) { sum += (i * pw); pw = entry.Key; } ans *= sum; } return ans; } // Driver code public static void Main(String[] args) { int n = 10; Console.WriteLine(sumDivisorsOfDivisors(n)); } } // This code is contributed // by Princi Singh
JavaScript <script> // Javascript program to find sum of divisors of all // the divisors of a natural number. // Returns sum of divisors of all the divisors // of n function sumDivisorsOfDivisors(n) { // Calculating powers of prime factors and // storing them in a map mp[]. let mp = new Map(); for (let j = 2; j <= Math.sqrt(n); j++) { let count = 0; while (n % j == 0) { n = Math.floor(n/j); count++; } if (count != 0) mp.set(j count); } // If n is a prime number if (n != 1) mp.set(n 1); // For each prime factor calculating (p^(a+1)-1)/(p-1) // and adding it to answer. let ans = 1; for (let [key value] of mp.entries()) { let pw = 1; let sum = 0; for (let i = value + 1; i >= 1; i--) { sum += (i * pw); pw = key; } ans *= sum; } return ans; } // Driver code let n = 10; document.write(sumDivisorsOfDivisors(n)); // This code is contributed by patel2127 </script>
Wyjście:
28
Złożoność czasowa: O(?n log n)
Przestrzeń pomocnicza: NA)
Optymalizacje:
W przypadkach, gdy istnieje wiele danych wejściowych, dla których musimy znaleźć wartość, której możemy użyć Sito Eratostenesa jak omówiono w Ten post.
byki kontra wół