Biorąc pod uwagę liczbę N monet, zadaniem jest znalezienie prawdopodobieństwo uzyskania co najmniej K liczby orłów po jednoczesnym rzuceniu wszystkimi N monetami.
Przykład :
Suppose we have 3 unbiased coins and we have to
find the probability of getting at least 2 heads
so there are 23 = 8 ways to toss these
coins i.e.
HHH HHT HTH HTT THH THT TTH TTT
Out of which there are 4 set which contain at
least 2 Heads i.e.
HHH HHT HH THH
So the probability is 4/8 or 0.5
Prawdopodobieństwo dokładnie k sukcesu w n próbach prawdopodobieństwo p sukcesu w dowolnej próbie wyraża się wzorem:
{displaystyle binom{n}{k}p^k(1-p)^{n-k}=^{n}textrm{c}_{k}(p)^k (1-p)^{n-k}=frac {n!(p)^k (1-p)^{n-k}}{(k)!(n-k)!}}
Zatem prawdopodobieństwo (zdobycie co najmniej 4 orłów) =
{displaystyle binom{6}{4}binom{1}{2}^4binom{1}{2}^2+binom{6}{5}binom{1}{2}^5binom{1}{2}^1+binom{6}{6}binom{1}{2}^6binom{1}{2}^0}
{displaystyle =frac {1}{2^6} w lewo ( frac {6!}{4!2!}+ frac {6!}{5!1!}+ frac {6!}{6!0!}w prawo)}
Metoda 1 (naiwna)
Naiwnym podejściem jest przechowywanie wartości silnia w tablicy dp[] i wywoływaj ją bezpośrednio, gdy jest to wymagane. Jednak problem tego podejścia polega na tym, że możemy go przechowywać tylko do określonej wartości, po czym doprowadzi to do przepełnienia.
Poniżej znajduje się implementacja powyższego podejścia
C++
// Naive approach in C++ to find probability of // at least k heads #include using namespace std; #define MAX 21 double fact[MAX]; // Returns probability of getting at least k // heads in n tosses. double probability(int k int n) { double ans = 0; for (int i = k; i <= n; ++i) // Probability of getting exactly i // heads out of n heads ans += fact[n] / (fact[i] * fact[n - i]); // Note: 1 << n = pow(2 n) ans = ans / (1LL << n); return ans; } void precompute() { // Preprocess all factorial only upto 19 // as after that it will overflow fact[0] = fact[1] = 1; for (int i = 2; i < 20; ++i) fact[i] = fact[i - 1] * i; } // Driver code int main() { precompute(); // Probability of getting 2 head out of 3 coins cout << probability(2 3) << 'n'; // Probability of getting 3 head out of 6 coins cout << probability(3 6) <<'n'; // Probability of getting 12 head out of 18 coins cout << probability(12 18); return 0; }
Java // JAVA Code for Probability of getting // atleast K heads in N tosses of Coins import java.io.*; class GFG { public static double fact[]; // Returns probability of getting at least k // heads in n tosses. public static double probability(int k int n) { double ans = 0; for (int i = k; i <= n; ++ i) // Probability of getting exactly i // heads out of n heads ans += fact[n] / (fact[i] * fact[n-i]); // Note: 1 << n = pow(2 n) ans = ans / (1 << n); return ans; } public static void precompute() { // Preprocess all factorial only upto 19 // as after that it will overflow fact[0] = fact[1] = 1; for (int i = 2; i < 20; ++i) fact[i] = fact[i - 1] * i; } // Driver code public static void main(String[] args) { fact = new double[100]; precompute(); // Probability of getting 2 head out // of 3 coins System.out.println(probability(2 3)); // Probability of getting 3 head out // of 6 coins System.out.println(probability(3 6)); // Probability of getting 12 head out // of 18 coins System.out.println(probability(12 18)); } } // This code is contributed by Arnav Kr. Mandal
Python3 # Naive approach in Python3 # to find probability of # at least k heads MAX=21 fact=[0]*MAX # Returns probability of # getting at least k # heads in n tosses. def probability(k n): ans = 0 for i in range(kn+1): # Probability of getting exactly i # heads out of n heads ans += fact[n] / (fact[i] * fact[n - i]) # Note: 1 << n = pow(2 n) ans = ans / (1 << n) return ans def precompute(): # Preprocess all factorial # only upto 19 # as after that it # will overflow fact[0] = 1 fact[1] = 1 for i in range(220): fact[i] = fact[i - 1] * i # Driver code if __name__=='__main__': precompute() # Probability of getting 2 # head out of 3 coins print(probability(2 3)) # Probability of getting # 3 head out of 6 coins print(probability(3 6)) # Probability of getting # 12 head out of 18 coins print(probability(12 18)) # This code is contributed by # mits
C# // C# Code for Probability of getting // atleast K heads in N tosses of Coins using System; class GFG { public static double []fact; // Returns probability of getting at least k // heads in n tosses. public static double probability(int k int n) { double ans = 0; for (int i = k; i <= n; ++ i) // Probability of getting exactly i // heads out of n heads ans += fact[n] / (fact[i] * fact[n - i]); // Note: 1 << n = pow(2 n) ans = ans / (1 << n); return ans; } public static void precompute() { // Preprocess all factorial only upto 19 // as after that it will overflow fact[0] = fact[1] = 1; for (int i = 2; i < 20; ++i) fact[i] = fact[i - 1] * i; } // Driver code public static void Main() { fact = new double[100]; precompute(); // Probability of getting 2 head out // of 3 coins Console.WriteLine(probability(2 3)); // Probability of getting 3 head out // of 6 coins Console.WriteLine(probability(3 6)); // Probability of getting 12 head out // of 18 coins Console.Write(probability(12 18)); } } // This code is contributed by nitin mittal.
JavaScript <script> // javascript Code for Probability of getting // atleast K heads in N tosses of Coins let fact; // Returns probability of getting at least k // heads in n tosses. function probability( k n) { let ans = 0 i; for ( i = k; i <= n; ++i) // Probability of getting exactly i // heads out of n heads ans += fact[n] / (fact[i] * fact[n - i]); // Note: 1 << n = pow(2 n) ans = ans / (1 << n); return ans; } function precompute() { // Preprocess all factorial only upto 19 // as after that it will overflow fact[0] = fact[1] = 1; for ( let i = 2; i < 20; ++i) fact[i] = fact[i - 1] * i; } // Driver code fact = Array(100).fill(0); precompute(); // Probability of getting 2 head out // of 3 coins document.write(probability(2 3)+'
'); // Probability of getting 3 head out // of 6 coins document.write(probability(3 6)+'
'); // Probability of getting 12 head out // of 18 coins document.write(probability(12 18).toFixed(6)+'
'); // This code is contributed by shikhasingrajput </script>
PHP // Naive approach in PHP to find // probability of at least k heads $MAX = 21; $fact = array_fill(0 $MAX 0); // Returns probability of getting // at least k heads in n tosses. function probability($k $n) { global $fact; $ans = 0; for ($i = $k; $i <= $n; ++$i) // Probability of getting exactly // i heads out of n heads $ans += $fact[$n] / ($fact[$i] * $fact[$n - $i]); // Note: 1 << n = pow(2 n) $ans = $ans / (1 << $n); return $ans; } function precompute() { global $fact; // Preprocess all factorial only // upto 19 as after that it // will overflow $fact[0] = $fact[1] = 1; for ($i = 2; $i < 20; ++$i) $fact[$i] = $fact[$i - 1] * $i; } // Driver code precompute(); // Probability of getting 2 // head out of 3 coins echo number_format(probability(2 3) 6) . 'n'; // Probability of getting 3 // head out of 6 coins echo number_format(probability(3 6) 6) . 'n'; // Probability of getting 12 // head out of 18 coins echo number_format(probability(12 18) 6); // This code is contributed by mits ?> Wyjście
0.5 0.65625 0.118942
Złożoność czasowa: O(n) gdzie n< 20
Przestrzeń pomocnicza: NA)
Metoda 2 (programowanie dynamiczne i log)
Innym sposobem jest użycie programowania dynamicznego i logarytmu. log() jest rzeczywiście przydatna do przechowywania silnia dowolnej liczby bez obawy o przepełnienie. Zobaczmy, jak z niego korzystamy:
At first let see how n! can be written.
n! = n * (n-1) * (n-2) * (n-3) * ... * 3 * 2 * 1
Now take log on base 2 both the sides as:
=> log(n!) = log(n) + log(n-1) + log(n-2) + ... + log(3)
+ log(2) + log(1)
Now whenever we need to find the factorial of any number we can use
this precomputed value. For example:
Suppose if we want to find the value of nC i which can be written as:
=> nCi = n! / (i! * (n-i)! )
Taking log 2() both sides as:
=> log2 (nCi) = log2 ( n! / (i! * (n-i)! ) )
=> log2 (nCi) = log2 ( n! ) - log2(i!) - log2( (n-i)! ) `
Putting dp[num] = log 2 (num!) we get:
=> log2 (nCi) = dp[n] - dp[i] - dp[n-i]
But as we see in above relation there is an extra factor of 2 n which
tells the probability of getting i heads so
=> log2 (2n) = n.
We will subtract this n from above result to get the final answer:
=> Pi (log2 (nCi)) = dp[n] - dp[i] - dp[n-i] - n
Now: Pi (nCi) = 2 dp[n] - dp[i] - dp[n-i] - n
Tada! Now the questions boils down the summation of P i for all i in
[k n] will yield the answer which can be calculated easily without
overflow.
Poniżej znajdują się kody ilustrujące to:
// Dynamic and Logarithm approach find probability of // at least k heads #include using namespace std; #define MAX 100001 // dp[i] is going to store Log ( i !) in base 2 double dp[MAX]; double probability(int k int n) { double ans = 0; // Initialize result // Iterate from k heads to n heads for (int i=k; i <= n; ++i) { double res = dp[n] - dp[i] - dp[n-i] - n; ans += pow(2.0 res); } return ans; } void precompute() { // Preprocess all the logarithm value on base 2 for (int i=2; i < MAX; ++i) dp[i] = log2(i) + dp[i-1]; } // Driver code int main() { precompute(); // Probability of getting 2 head out of 3 coins cout << probability(2 3) << 'n'; // Probability of getting 3 head out of 6 coins cout << probability(3 6) << 'n'; // Probability of getting 500 head out of 10000 coins cout << probability(500 1000); return 0; }
Java // Dynamic and Logarithm approach find probability of // at least k heads import java.io.*; import java.math.*; class GFG { static int MAX = 100001; // dp[i] is going to store Log ( i !) in base 2 static double dp[] = new double[MAX]; static double probability(int k int n) { double ans = 0.0; // Initialize result // Iterate from k heads to n heads for (int i=k; i <= n; ++i) { double res = dp[n] - dp[i] - dp[n-i] - n; ans += Math.pow(2.0 res); } return ans; } static void precompute() { // Preprocess all the logarithm value on base 2 for (int i=2; i < MAX; ++i) dp[i] = (Math.log(i)/Math.log(2)) + dp[i-1]; } // Driver code public static void main(String args[]) { precompute(); // Probability of getting 2 head out of 3 coins System.out.println(probability(2 3)); // Probability of getting 3 head out of 6 coins System.out.println(probability(3 6)); // Probability of getting 500 head out of 10000 coins System.out.println(probability(500 1000)); } }
Python3 # Dynamic and Logarithm approach find probability of # at least k heads from math import log2 MAX=100001 # dp[i] is going to store Log ( i !) in base 2 dp=[0]*MAX def probability( k n): ans = 0 # Initialize result # Iterate from k heads to n heads for i in range(kn+1): res = dp[n] - dp[i] - dp[n-i] - n ans = ans + pow(2.0 res) return ans def precompute(): # Preprocess all the logarithm value on base 2 for i in range(2MAX): dp[i] = log2(i) + dp[i-1] # Driver code if __name__=='__main__': precompute() # Probability of getting 2 head out of 3 coins print(probability(2 3)) # Probability of getting 3 head out of 6 coins print(probability(3 6)) # Probability of getting 500 head out of 10000 coins print(probability(500 1000)) #this code is contributed by ash264
C# // Dynamic and Logarithm approach find probability of // at least k heads using System; class GFG { static int MAX = 100001; // dp[i] is going to store Log ( i !) in base 2 static double[] dp = new double[MAX]; static double probability(int k int n) { double ans = 0.0; // Initialize result // Iterate from k heads to n heads for (int i = k; i <= n; ++i) { double res = dp[n] - dp[i] - dp[n-i] - n; ans += Math.Pow(2.0 res); } return ans; } static void precompute() { // Preprocess all the logarithm value on base 2 for (int i = 2; i < MAX; ++i) dp[i] = (Math.Log(i) / Math.Log(2)) + dp[i - 1]; } // Driver code public static void Main() { precompute(); // Probability of getting 2 head out of 3 coins Console.WriteLine(probability(2 3)); // Probability of getting 3 head out of 6 coins Console.WriteLine(probability(3 6)); // Probability of getting 500 head out of 10000 coins Console.WriteLine(Math.Round(probability(500 1000)6)); } } // This code is contributed by mits
JavaScript <script> // Dynamic and Logarithm approach find probability of // at least k heads let MAX = 100001; // dp[i] is going to store Log ( i !) in base 2 let dp = new Array(MAX).fill(0); function probability(k n) { var ans = 0.0; // Initialize result // Iterate from k heads to n heads for (let i = k; i <= n; ++i) { var res = dp[n] - dp[i] - dp[n - i] - n; ans += Math.pow(2.0 res); } return ans; } function precompute() { // Preprocess all the logarithm value on base 2 for (let i = 2; i < MAX; ++i) dp[i] = (Math.log(i) / Math.log(2)) + dp[i - 1]; } // Driver code precompute(); // Probability of getting 2 head out of 3 coins document.write(probability(2 3).toFixed(2)+'
'); // Probability of getting 3 head out of 6 coins document.write(probability(3 6).toFixed(5)+'
'); // Probability of getting 500 head out of 10000 coins document.write(probability(500 1000).toFixed(6)+'
'); // This code is contributed by Amit Katiyar </script>
PHP // Dynamic and Logarithm approach // find probability of at least k heads $MAX = 100001; // dp[i] is going to store // Log ( i !) in base 2 $dp = array_fill(0 $MAX 0); function probability($k $n) { global $MAX $dp; $ans = 0; // Initialize result // Iterate from k heads to n heads for ($i = $k; $i <= $n; ++$i) { $res = $dp[$n] - $dp[$i] - $dp[$n - $i] - $n; $ans += pow(2.0 $res); } return $ans; } function precompute() { global $MAX $dp; // Preprocess all the logarithm // value on base 2 for ($i = 2; $i < $MAX; ++$i) // Note : log2() function is not in php // Some OUTPUT very in their decimal point // Basically log(valuebase) is work as // this logic : 'log10(value)/log10(2)' // equals to log2(value) $dp[$i] = log($i 2) + $dp[$i - 1]; } // Driver code precompute(); // Probability of getting 2 // head out of 3 coins echo probability(2 3).'n'; // Probability of getting 3 // head out of 6 coins echo probability(3 6).'n'; // Probability of getting 500 // head out of 10000 coins echo probability(500 1000); // This code is contributed by mits ?> Wyjście
0.5 0.65625 0.512613
Złożoność czasowa: NA)
Przestrzeń pomocnicza: NA)
To podejście jest korzystne w przypadku dużych wartości n w zakresie od 1 do 10 6