logo

Policz sposoby pisowni liczby zawierającej powtarzające się cyfry

Wypróbuj w praktyce GfG ' title= #practiceLinkDiv { display: none !important; }

Biorąc pod uwagę ciąg znaków zawierający cyfry liczby. Liczba może zawierać wiele takich samych ciągłych cyfr. Zadanie polega na policzeniu liczby sposobów zapisania liczby. 
Weźmy na przykład pod uwagę liczbę 8884441100, którą można przeliterować po prostu jako potrójne osiem potrójne cztery podwójne dwa i podwójne zero. Można również przeliterować jako podwójne osiem osiem cztery podwójne cztery dwa dwa podwójne zero. 

Przykłady:   

Input : num = 100 Output : 2 The number 100 has only 2 possibilities 1) one zero zero 2) one double zero. Input : num = 11112 Output: 8 1 1 1 1 2 11 1 1 2 1 1 11 2 1 11 1 2 11 11 2 1 111 2 111 1 2 1111 2 Input : num = 8884441100 Output: 64 Input : num = 12345 Output: 1 Input : num = 11111 Output: 16
Recommended Practice Przeliteruj liczbę Spróbuj!

Jest to prosty problem permutacji i kombinacji. Jeśli weźmiemy przykładowy przypadek testowy podany w pytaniu 11112. Odpowiedź zależy od liczby możliwych podciągów 1111. Liczba możliwych podciągów „1111” wynosi 2^3 = 8, ponieważ jest to liczba kombinacji 4 - 1 = 3 separatory „|” pomiędzy dwoma znakami ciągu (cyfry liczby reprezentowanej przez ciąg): '1|1|1|1'. Ponieważ nasze kombinacje będą zależeć od tego, czy wybierzemy konkretną 1, a dla „2” będzie tylko jedna możliwość 2^0 = 1, więc odpowiedź dla „11112” będzie wynosić 8*1 = 8. 



Zatem podejście polega na zliczeniu konkretnej ciągłej cyfry w ciągu i pomnożeniu 2^(liczba-1) przez poprzedni wynik. 

C++
// C++ program to count number of ways we // can spell a number #include   using namespace std; typedef long long int ll; // Function to calculate all possible spells of // a number with repeated digits // num --> string which is favourite number ll spellsCount(string num) {  int n = num.length();  // final count of total possible spells  ll result = 1;  // iterate through complete number  for (int i=0; i<n; i++)  {  // count contiguous frequency of particular  // digit num[i]  int count = 1;  while (i < n-1 && num[i+1] == num[i])  {  count++;  i++;  }  // Compute 2^(count-1) and multiply with result   result = result * pow(2 count-1);  }  return result; } // Driver program to run the case int main() {  string num = '11112';  cout << spellsCount(num);  return 0; } 
Java
// Java program to count number of ways we // can spell a number import java.io.*; class GFG {    // Function to calculate all possible   // spells of a number with repeated digits  // num --> string which is favourite number  static long spellsCount(String num)  {    int n = num.length();  // final count of total possible spells  long result = 1;  // iterate through complete number  for (int i = 0; i < n; i++) {    // count contiguous frequency of   // particular digit num[i]  int count = 1;    while (i < n - 1 && num.charAt(i + 1)   == num.charAt(i)) {    count++;  i++;  }  // Compute 2^(count-1) and multiply   // with result  result = result *   (long)Math.pow(2 count - 1);  }  return result;  }  public static void main(String[] args)  {  String num = '11112';  System.out.print(spellsCount(num));  } } // This code is contributed by Anant Agarwal. 
Python3
# Python3 program to count number of # ways we can spell a number # Function to calculate all possible  # spells of a number with repeated  # digits num --> string which is  # favourite number def spellsCount(num): n = len(num); # final count of total # possible spells result = 1; # iterate through complete # number i = 0; while(i<n): # count contiguous frequency  # of particular digit num[i] count = 1; while (i < n - 1 and num[i + 1] == num[i]): count += 1; i += 1; # Compute 2^(count-1) and # multiply with result  result = result * int(pow(2 count - 1)); i += 1; return result; # Driver Code num = '11112'; print(spellsCount(num)); # This code is contributed # by mits 
C#
// C# program to count number of ways we // can spell a number using System; class GFG {    // Function to calculate all possible   // spells of a number with repeated   // digits num --> string which is  // favourite number  static long spellsCount(String num)  {    int n = num.Length;  // final count of total possible  // spells  long result = 1;  // iterate through complete number  for (int i = 0; i < n; i++)  {    // count contiguous frequency of   // particular digit num[i]  int count = 1;    while (i < n - 1 && num[i + 1]   == num[i])  {  count++;  i++;  }  // Compute 2^(count-1) and multiply   // with result  result = result *   (long)Math.Pow(2 count - 1);  }    return result;  }  // Driver code  public static void Main()  {  String num = '11112';  Console.Write(spellsCount(num));  } } // This code is contributed by nitin mittal. 
PHP
 // PHP program to count  // number of ways we // can spell a number // Function to calculate  // all possible spells of // a number with repeated  // digits num --> string // which is favourite number function spellsCount($num) { $n = strlen($num); // final count of total // possible spells $result = 1; // iterate through  // complete number for ($i = 0; $i < $n; $i++) { // count contiguous frequency  // of particular digit num[i] $count = 1; while ($i < $n - 1 && $num[$i + 1] == $num[$i]) { $count++; $i++; } // Compute 2^(count-1) and // multiply with result  $result = $result * pow(2 $count - 1); } return $result; } // Driver Code $num = '11112'; echo spellsCount($num); // This code is contributed // by nitin mittal.  ?> 
JavaScript
<script> // Javascript program to count number of  // ways we can spell a number // Function to calculate all possible  // spells of a number with repeated  // digits num --> string which is // favourite number function spellsCount(num) {  let n = num.length;  // Final count of total possible  // spells  let result = 1;  // Iterate through complete number  for (let i = 0; i < n; i++)  {    // Count contiguous frequency of   // particular digit num[i]  let count = 1;    while (i < n - 1 &&   num[i + 1] == num[i])  {  count++;  i++;  }  // Compute 2^(count-1) and multiply   // with result  result = result *   Math.pow(2 count - 1);  }  return result; }   // Driver code let num = '11112'; document.write(spellsCount(num)); // This code is contributed by code_hunt   </script> 

Wyjście
8

Złożoność czasowa: O(n*log(n))
Przestrzeń pomocnicza: O(1)

Jeśli masz inne podejście do rozwiązania tego problemu, podziel się nim.