logo

Algorytm oceny Elo

The Algorytm oceny Elo to szeroko stosowany algorytm oceniania używany do ustalania rankingów graczy w wielu konkurencyjnych grach. 

  • Gracze z wyższym rankingiem ELO mają większe prawdopodobieństwo wygrania gry niż gracze z niższym rankingiem ELO.
  • Po każdej grze ranking ELO zawodników jest aktualizowany.
  • Jeśli wygra gracz z wyższym rankingiem ELO, od gracza z niższym rankingiem zostanie przeniesionych tylko kilka punktów.
  • Jeśli jednak wygra gracz z niższą oceną, wówczas punkty przekazane przez gracza z wyższą oceną będą znacznie większe.

Zbliżać się: Aby rozwiązać problem, postępuj zgodnie z poniższym pomysłem:

P1: Prawdopodobieństwo wygranej gracza z oceną 2 P2: Prawdopodobieństwo wygranej gracza z oceną 1. 
P1 = (1,0 / (1,0 + pow(10 ((ocena1 - ocena2) / 400)))); 
P2 = (1,0 / (1,0 + pow(10 ((ocena2 - ocena1) / 400)))); 



czym jest struktura w strukturze danych

Oczywiście P1 + P2 = 1. Ocena gracza jest aktualizowana według poniższego wzoru:- 
ocena1 = ocena1 + K*(Rzeczywisty wynik – oczekiwany wynik); 

W większości gier „Rzeczywisty wynik” wynosi 0 lub 1, co oznacza, że ​​gracz albo wygrywa, albo przegrywa. K jest stałą. Jeśli K ma niższą wartość, ocena zmienia się o niewielki ułamek, natomiast jeśli K ma większą wartość, to zmiany oceny są znaczące. Różne organizacje ustalają inną wartość K.

Przykład:

Załóżmy, że na chess.com odbywa się mecz na żywo pomiędzy dwoma graczami 
ocena1 = 1200 ocena2 = 1000; 

P1 = (1,0 / (1,0 + pow(10 ((1000-1200) / 400)))) = 0,76 
P2 = (1,0 / (1,0 + pow(10 ((1200-1000) / 400)))) = 0,24 
I załóż stałą K=30; 

PRZYPADEK 1: 
Załóżmy, że Gracz 1 wygrywa: ocena1 = ocena1 + k*(rzeczywista - oczekiwana) = 1200+30(1 - 0,76) = 1207,2; 
ocena2 = ocena2 + k*(rzeczywista - oczekiwana) = 1000+30(0 - 0,24) = 992,8; 

Przypadek 2:  
Załóżmy, że Gracz 2 wygrywa: ocena1 = ocena1 + k*(rzeczywista - oczekiwana) = 1200+30(0 - 0,76) = 1177,2; 
ocena2 = ocena2 + k*(rzeczywista - oczekiwana) = 1000+30(1 - 0,24) = 1022,8;

0,06 jako ułamek

Wykonaj poniższe kroki, aby rozwiązać problem:

  • Oblicz prawdopodobieństwo wygranej graczy A i B, korzystając ze wzoru podanego powyżej
  • Jeśli wygra gracz A lub gracz B, wówczas oceny są odpowiednio aktualizowane przy użyciu wzorów:
    • ocena1 = ocena1 + K*(Rzeczywisty wynik – oczekiwany wynik)
    • ocena2 = ocena2 + K*(Rzeczywisty wynik – oczekiwany wynik)
    • Gdzie rzeczywisty wynik wynosi 0 lub 1
  • Wydrukuj zaktualizowane oceny

Poniżej implementacja powyższego podejścia:

CPP
#include    using namespace std; // Function to calculate the Probability float Probability(int rating1 int rating2) {  // Calculate and return the expected score  return 1.0 / (1 + pow(10 (rating1 - rating2) / 400.0)); } // Function to calculate Elo rating // K is a constant. // outcome determines the outcome: 1 for Player A win 0 for Player B win 0.5 for draw. void EloRating(float Ra float Rb int K float outcome) {  // Calculate the Winning Probability of Player B  float Pb = Probability(Ra Rb);  // Calculate the Winning Probability of Player A  float Pa = Probability(Rb Ra);  // Update the Elo Ratings  Ra = Ra + K * (outcome - Pa);  Rb = Rb + K * ((1 - outcome) - Pb);  // Print updated ratings  cout << 'Updated Ratings:-n';  cout << 'Ra = ' << Ra << ' Rb = ' << Rb << endl; } // Driver code int main() {  // Current ELO ratings  float Ra = 1200 Rb = 1000;  // K is a constant  int K = 30;  // Outcome: 1 for Player A win 0 for Player B win 0.5 for draw  float outcome = 1;  // Function call  EloRating(Ra Rb K outcome);  return 0; } 
Java
import java.lang.Math; public class EloRating {  // Function to calculate the Probability  public static double Probability(int rating1 int rating2) {  // Calculate and return the expected score  return 1.0 / (1 + Math.pow(10 (rating1 - rating2) / 400.0));  }  // Function to calculate Elo rating  // K is a constant.  // outcome determines the outcome: 1 for Player A win 0 for Player B win 0.5 for draw.  public static void EloRating(double Ra double Rb int K double outcome) {  // Calculate the Winning Probability of Player B  double Pb = Probability(Ra Rb);  // Calculate the Winning Probability of Player A  double Pa = Probability(Rb Ra);  // Update the Elo Ratings  Ra = Ra + K * (outcome - Pa);  Rb = Rb + K * ((1 - outcome) - Pb);  // Print updated ratings  System.out.println('Updated Ratings:-');  System.out.println('Ra = ' + Ra + ' Rb = ' + Rb);  }  public static void main(String[] args) {  // Current ELO ratings  double Ra = 1200 Rb = 1000;  // K is a constant  int K = 30;  // Outcome: 1 for Player A win 0 for Player B win 0.5 for draw  double outcome = 1;  // Function call  EloRating(Ra Rb K outcome);  } } 
Python
import math # Function to calculate the Probability def probability(rating1 rating2): # Calculate and return the expected score return 1.0 / (1 + math.pow(10 (rating1 - rating2) / 400.0)) # Function to calculate Elo rating # K is a constant. # outcome determines the outcome: 1 for Player A win 0 for Player B win 0.5 for draw. def elo_rating(Ra Rb K outcome): # Calculate the Winning Probability of Player B Pb = probability(Ra Rb) # Calculate the Winning Probability of Player A Pa = probability(Rb Ra) # Update the Elo Ratings Ra = Ra + K * (outcome - Pa) Rb = Rb + K * ((1 - outcome) - Pb) # Print updated ratings print('Updated Ratings:-') print(f'Ra = {Ra} Rb = {Rb}') # Current ELO ratings Ra = 1200 Rb = 1000 # K is a constant K = 30 # Outcome: 1 for Player A win 0 for Player B win 0.5 for draw outcome = 1 # Function call elo_rating(Ra Rb K outcome) 
C#
using System; class EloRating {  // Function to calculate the Probability  public static double Probability(int rating1 int rating2)  {  // Calculate and return the expected score  return 1.0 / (1 + Math.Pow(10 (rating1 - rating2) / 400.0));  }  // Function to calculate Elo rating  // K is a constant.  // outcome determines the outcome: 1 for Player A win 0 for Player B win 0.5 for draw.  public static void CalculateEloRating(ref double Ra ref double Rb int K double outcome)  {  // Calculate the Winning Probability of Player B  double Pb = Probability((int)Ra (int)Rb);  // Calculate the Winning Probability of Player A  double Pa = Probability((int)Rb (int)Ra);  // Update the Elo Ratings  Ra = Ra + K * (outcome - Pa);  Rb = Rb + K * ((1 - outcome) - Pb);  }  static void Main()  {  // Current ELO ratings  double Ra = 1200 Rb = 1000;  // K is a constant  int K = 30;  // Outcome: 1 for Player A win 0 for Player B win 0.5 for draw  double outcome = 1;  // Function call  CalculateEloRating(ref Ra ref Rb K outcome);  // Print updated ratings  Console.WriteLine('Updated Ratings:-');  Console.WriteLine($'Ra = {Ra} Rb = {Rb}');  } } 
JavaScript
// Function to calculate the Probability function probability(rating1 rating2) {  // Calculate and return the expected score  return 1 / (1 + Math.pow(10 (rating1 - rating2) / 400)); } // Function to calculate Elo rating // K is a constant. // outcome determines the outcome: 1 for Player A win 0 for Player B win 0.5 for draw. function eloRating(Ra Rb K outcome) {  // Calculate the Winning Probability of Player B  let Pb = probability(Ra Rb);  // Calculate the Winning Probability of Player A  let Pa = probability(Rb Ra);  // Update the Elo Ratings  Ra = Ra + K * (outcome - Pa);  Rb = Rb + K * ((1 - outcome) - Pb);  // Print updated ratings  console.log('Updated Ratings:-');  console.log(`Ra = ${Ra} Rb = ${Rb}`); } // Current ELO ratings let Ra = 1200 Rb = 1000; // K is a constant let K = 30; // Outcome: 1 for Player A win 0 for Player B win 0.5 for draw let outcome = 1; // Function call eloRating(Ra Rb K outcome); 

Wyjście
Updated Ratings:- Ra = 1207.21 Rb = 992.792 

Złożoność czasowa: Złożoność czasowa algorytmu zależy głównie od złożoności funkcji pow, której złożoność zależy od architektury komputera. Na x86 jest to operacja w czasie stałym: -O(1)
Przestrzeń pomocnicza: O(1)