The Algorytm oceny Elo to szeroko stosowany algorytm oceniania używany do ustalania rankingów graczy w wielu konkurencyjnych grach.
- Gracze z wyższym rankingiem ELO mają większe prawdopodobieństwo wygrania gry niż gracze z niższym rankingiem ELO.
- Po każdej grze ranking ELO zawodników jest aktualizowany.
- Jeśli wygra gracz z wyższym rankingiem ELO, od gracza z niższym rankingiem zostanie przeniesionych tylko kilka punktów.
- Jeśli jednak wygra gracz z niższą oceną, wówczas punkty przekazane przez gracza z wyższą oceną będą znacznie większe.
Zbliżać się: Aby rozwiązać problem, postępuj zgodnie z poniższym pomysłem:
P1: Prawdopodobieństwo wygranej gracza z oceną 2 P2: Prawdopodobieństwo wygranej gracza z oceną 1.
P1 = (1,0 / (1,0 + pow(10 ((ocena1 - ocena2) / 400))));
P2 = (1,0 / (1,0 + pow(10 ((ocena2 - ocena1) / 400))));czym jest struktura w strukturze danychOczywiście P1 + P2 = 1. Ocena gracza jest aktualizowana według poniższego wzoru:-
ocena1 = ocena1 + K*(Rzeczywisty wynik – oczekiwany wynik);W większości gier „Rzeczywisty wynik” wynosi 0 lub 1, co oznacza, że gracz albo wygrywa, albo przegrywa. K jest stałą. Jeśli K ma niższą wartość, ocena zmienia się o niewielki ułamek, natomiast jeśli K ma większą wartość, to zmiany oceny są znaczące. Różne organizacje ustalają inną wartość K.
Przykład:
Załóżmy, że na chess.com odbywa się mecz na żywo pomiędzy dwoma graczami
ocena1 = 1200 ocena2 = 1000;P1 = (1,0 / (1,0 + pow(10 ((1000-1200) / 400)))) = 0,76
P2 = (1,0 / (1,0 + pow(10 ((1200-1000) / 400)))) = 0,24
I załóż stałą K=30;PRZYPADEK 1:
Załóżmy, że Gracz 1 wygrywa: ocena1 = ocena1 + k*(rzeczywista - oczekiwana) = 1200+30(1 - 0,76) = 1207,2;
ocena2 = ocena2 + k*(rzeczywista - oczekiwana) = 1000+30(0 - 0,24) = 992,8;Przypadek 2:
Załóżmy, że Gracz 2 wygrywa: ocena1 = ocena1 + k*(rzeczywista - oczekiwana) = 1200+30(0 - 0,76) = 1177,2;
ocena2 = ocena2 + k*(rzeczywista - oczekiwana) = 1000+30(1 - 0,24) = 1022,8;0,06 jako ułamek
Wykonaj poniższe kroki, aby rozwiązać problem:
- Oblicz prawdopodobieństwo wygranej graczy A i B, korzystając ze wzoru podanego powyżej
- Jeśli wygra gracz A lub gracz B, wówczas oceny są odpowiednio aktualizowane przy użyciu wzorów:
- ocena1 = ocena1 + K*(Rzeczywisty wynik – oczekiwany wynik)
- ocena2 = ocena2 + K*(Rzeczywisty wynik – oczekiwany wynik)
- Gdzie rzeczywisty wynik wynosi 0 lub 1
- Wydrukuj zaktualizowane oceny
Poniżej implementacja powyższego podejścia:
CPP#include using namespace std; // Function to calculate the Probability float Probability(int rating1 int rating2) { // Calculate and return the expected score return 1.0 / (1 + pow(10 (rating1 - rating2) / 400.0)); } // Function to calculate Elo rating // K is a constant. // outcome determines the outcome: 1 for Player A win 0 for Player B win 0.5 for draw. void EloRating(float Ra float Rb int K float outcome) { // Calculate the Winning Probability of Player B float Pb = Probability(Ra Rb); // Calculate the Winning Probability of Player A float Pa = Probability(Rb Ra); // Update the Elo Ratings Ra = Ra + K * (outcome - Pa); Rb = Rb + K * ((1 - outcome) - Pb); // Print updated ratings cout << 'Updated Ratings:-n'; cout << 'Ra = ' << Ra << ' Rb = ' << Rb << endl; } // Driver code int main() { // Current ELO ratings float Ra = 1200 Rb = 1000; // K is a constant int K = 30; // Outcome: 1 for Player A win 0 for Player B win 0.5 for draw float outcome = 1; // Function call EloRating(Ra Rb K outcome); return 0; }
Java import java.lang.Math; public class EloRating { // Function to calculate the Probability public static double Probability(int rating1 int rating2) { // Calculate and return the expected score return 1.0 / (1 + Math.pow(10 (rating1 - rating2) / 400.0)); } // Function to calculate Elo rating // K is a constant. // outcome determines the outcome: 1 for Player A win 0 for Player B win 0.5 for draw. public static void EloRating(double Ra double Rb int K double outcome) { // Calculate the Winning Probability of Player B double Pb = Probability(Ra Rb); // Calculate the Winning Probability of Player A double Pa = Probability(Rb Ra); // Update the Elo Ratings Ra = Ra + K * (outcome - Pa); Rb = Rb + K * ((1 - outcome) - Pb); // Print updated ratings System.out.println('Updated Ratings:-'); System.out.println('Ra = ' + Ra + ' Rb = ' + Rb); } public static void main(String[] args) { // Current ELO ratings double Ra = 1200 Rb = 1000; // K is a constant int K = 30; // Outcome: 1 for Player A win 0 for Player B win 0.5 for draw double outcome = 1; // Function call EloRating(Ra Rb K outcome); } }
Python import math # Function to calculate the Probability def probability(rating1 rating2): # Calculate and return the expected score return 1.0 / (1 + math.pow(10 (rating1 - rating2) / 400.0)) # Function to calculate Elo rating # K is a constant. # outcome determines the outcome: 1 for Player A win 0 for Player B win 0.5 for draw. def elo_rating(Ra Rb K outcome): # Calculate the Winning Probability of Player B Pb = probability(Ra Rb) # Calculate the Winning Probability of Player A Pa = probability(Rb Ra) # Update the Elo Ratings Ra = Ra + K * (outcome - Pa) Rb = Rb + K * ((1 - outcome) - Pb) # Print updated ratings print('Updated Ratings:-') print(f'Ra = {Ra} Rb = {Rb}') # Current ELO ratings Ra = 1200 Rb = 1000 # K is a constant K = 30 # Outcome: 1 for Player A win 0 for Player B win 0.5 for draw outcome = 1 # Function call elo_rating(Ra Rb K outcome)
C# using System; class EloRating { // Function to calculate the Probability public static double Probability(int rating1 int rating2) { // Calculate and return the expected score return 1.0 / (1 + Math.Pow(10 (rating1 - rating2) / 400.0)); } // Function to calculate Elo rating // K is a constant. // outcome determines the outcome: 1 for Player A win 0 for Player B win 0.5 for draw. public static void CalculateEloRating(ref double Ra ref double Rb int K double outcome) { // Calculate the Winning Probability of Player B double Pb = Probability((int)Ra (int)Rb); // Calculate the Winning Probability of Player A double Pa = Probability((int)Rb (int)Ra); // Update the Elo Ratings Ra = Ra + K * (outcome - Pa); Rb = Rb + K * ((1 - outcome) - Pb); } static void Main() { // Current ELO ratings double Ra = 1200 Rb = 1000; // K is a constant int K = 30; // Outcome: 1 for Player A win 0 for Player B win 0.5 for draw double outcome = 1; // Function call CalculateEloRating(ref Ra ref Rb K outcome); // Print updated ratings Console.WriteLine('Updated Ratings:-'); Console.WriteLine($'Ra = {Ra} Rb = {Rb}'); } }
JavaScript // Function to calculate the Probability function probability(rating1 rating2) { // Calculate and return the expected score return 1 / (1 + Math.pow(10 (rating1 - rating2) / 400)); } // Function to calculate Elo rating // K is a constant. // outcome determines the outcome: 1 for Player A win 0 for Player B win 0.5 for draw. function eloRating(Ra Rb K outcome) { // Calculate the Winning Probability of Player B let Pb = probability(Ra Rb); // Calculate the Winning Probability of Player A let Pa = probability(Rb Ra); // Update the Elo Ratings Ra = Ra + K * (outcome - Pa); Rb = Rb + K * ((1 - outcome) - Pb); // Print updated ratings console.log('Updated Ratings:-'); console.log(`Ra = ${Ra} Rb = ${Rb}`); } // Current ELO ratings let Ra = 1200 Rb = 1000; // K is a constant let K = 30; // Outcome: 1 for Player A win 0 for Player B win 0.5 for draw let outcome = 1; // Function call eloRating(Ra Rb K outcome);
Wyjście
Updated Ratings:- Ra = 1207.21 Rb = 992.792
Złożoność czasowa: Złożoność czasowa algorytmu zależy głównie od złożoności funkcji pow, której złożoność zależy od architektury komputera. Na x86 jest to operacja w czasie stałym: -O(1)
Przestrzeń pomocnicza: O(1)